

CMS Standard Model Physics Results

Frank-Peter Schilling (KIT, Karlsruhe)

14th Annual RDMS CMS
Collaboration Conference
Varna (Bulgaria), 07/09/2010

Outline

CMS presented many SM results with 7TeV data at ICHEP Few updates with more recent data also covered here

- Soft QCD and Underlying Event
- Jet Physics
- J/Psi and Y cross sections
- b cross section
- W and Z production
- Top Quarks

Charged Hadron Spectra (QCD-09-010 and QCD-10-006)

- First CMS publications!
- Charge particle density and <Pt> for sqrt(s)=0.9, 2.36 and 7 TeV
 - Three methods: Pixel hit counting, PX tracklets, full tracking, Pt>=100 MeV

 $dN/dEta|_{eta=0} = 5.78 + /-0.01(stat) + /-0.23(syst.)$ at 7TeV for NSD events (higher than most predictions)

Charged particle Multiplicity (QCD-10-004)

- Measurement at 0.9, 2.36 and 7 TeV for Pt>100MeV (extrapolated to zero)
 - 900GeV data consistent with previous experiments
 - 7TeV data higher than extrapolations from lower energies

Charged particle Multiplicity (QCD-10-004)

- Comparison with models
 - All (incl. those descrining lower energy data) have problems to reproduce energy dependence

- Violation of KNO scaling confirmed
 - KNO: normalized multiplicity moments Cq=<n^q>/<n>^q independent of s

Underlying Event at 0.9 and 7 TeV (QCD-10-001 and QCD-10-010)

- Average charged particle multiplicity N(ch) vs eta
 - 0.9 TeV, events with leading track-jet Pt>1GeV

- Average Sum[Pt(ch)] per unit area
 - 7 TeV, events with leading trackPt>2GeV

None of the tunes can describe all features of data To study UE, look in particular at transverse region ...

Underlying Event at 7 TeV (QCD-10-010)

- Strong increase in transverse region with Pt(jet), followed by shallow rise
 - Average N(ch) vs Pt(leading track-jet)
 - Average Sum(Pt,ch) vs Pt(leading track-jet)

Underlying Event (QCD-10-001 and QCD-10-005)

- Energy dependence not well described by models which are consistent with Tevatron data
 - Esp fast rise at low jet Pt

- QCD-10-005: New approach (Cacciari, Salam, Sapeta)
 - Median of jet Pt / jet area

$$\rho' = \underset{j \in \text{ physical jets}}{\text{median}} \left[\left\{ \frac{p_{Tj}}{A_j} \right\} \right] \cdot C$$

Need for new Tune, better consistent with our data

New Phythia 6 Tune Z1 (Rick Field)

- Native Pythia 6.4 tune
 - Pt ordered showers, new MPI model
 - previous tunes (e.g. D6T, DW) were obtained using Q2 ordered showers

- Similar to ATLAS tune AMBT1, but
 - Using CTEQ5L instead of LO*
 - Varied PARP(82) and PARP(90) [MPI parameters] to best fit
 CMS UE data at 0.9 and 7 TeV

However, slightly overestimates CDF 1.96 TeV data

New Phythia 6 Tune Z1

New Phythia 6 Tune Z1

 Interesting Excess of events with large transverse multiplicity / Sum(Pt) at low scales

Next steps:

- •Tune Z2 (use CTEQ6) used as basis for next big MC production
- Corrected UE data for use outside CMS / in global fits

Inclusive Jet Cross section (QCD-10-011)

- L=60nb-1, measure cross section in various rapidity bins for Pt=18 ... O(500) GeV, using three jet types
 - Calorimeter only, Jet-plus-tracks, particle flow
- Good agreement between methods, and with NLO QCD
 - o NLOJET++

Inclusive Jet Cross section (QCD-10-011)

Experimental uncertainties:

- perimental uncertainties: plus 2%*|eta| (size of residual correction)
- Luminosity 11%

Theoretical uncertainties:

- Scale uncertainty mur=muf=Pt/2...2Pt
- Non-perturbative effects (Pythia vs Herwig)
- o PDF (CTEQ6.6 error sets)

Agreement Data-Thory within 20%

3/2 jet ratio (QCD-10-012)

- R3/2 measured vs HT for HT up to 1TeV
 - Cancellation of systematics
 - Sensitivity to alpha-s in plateau regime
- Consistent with PYTHIA and MADGRAPH within present uncertainties (dominated by stat.)

Event shapes (QCD-10-013)

- 7TeV data, 80nb-1
- Event shapes not affected by JES uncertainty (only indirectly due to jet counting)
- Model comparisons
 - Best agreement with PYTHIA6 and HERWIG++
 - ALPGEN/MADGRAPH more peaked at dphi=180, smaller R3/2 -> shift of event shapes to smaller values
 - O Difference P6-P8 cannot be accounted for by shower model

Central transverse thrust

Dijet Azimuthal Decorrelations (QCD-10-015)

- Dijets, Pt>30 GeV, |y|<1.1
- Measured in various Pt(max) intervals
 - PYTHIA/HERWIG++ in agreement with data
 - Madgraph has ~20% less decorrelation

- Sensitive to higher order effects / ISR
 - Useful for MC tuning

b-cross section with muons (BPH-10-007)

$$\sigma(pp \to b + X \to \mu + X', p_{\perp}^{\mu} > 6 \,\text{GeV}, |\eta^{\mu}| < 2.1)$$

Cross section from template fits to Pt-rel(mu) distributions

Data above MC@NLO calculation
Also different rapidity shape ovserved

Inclusive b cross section with b-tagging (BPH-10-009)

- Use secondary vertex btagger (>= 3 tracks)
- Sample purity from MC btagging/mistag rates
 - Cross checked using SV mass template fits

BPH-10-009 (cont.)

Good agreement with PYTHIA for Pt>30 GeV MC@NLO describes overall fraction of b-jets, but with significant differences in shape

Di-Muon Mass Spectrum

J/Psi cross section (BPH-10-002)

• Inclusive measurement:

$$BR(J/\psi \to \mu^+\mu^-) \cdot \sigma(pp \to J/\psi + X) =$$

(289.1 ± 16.7(stat) ± 60.1(syst)) nb

 Prompt and non-prompt contributions from fit to transverse decay length

Fraction of J/Psi's from B-hadrons agrees well with other Expt's

Y(1S),Y(2S),Y(3S) (BPH-10-003)

 Inclusive Y(1S) cross section at 7 TeV

$$\sigma(pp \to Y(1S)X) \cdot \mathcal{B}(Y(1S) \to \mu^{+}\mu^{-}) =$$

(8.3 ± (0.5)_{stat.} ± (0.9)_{lumi.} ± (1.0)_{syst.}) nb

Ratio R=[Y(2S)+Y(3S)]/Y(1S)

$$R = 0.44 \pm 0.06 \pm 0.07$$

W/Z to muons (EWK-10-002)

- W selection & signal extraction
 - Isolated muon, Pt>20 GeV, |eta|<2.1, PF or TC MET
 - N(W) from template fit to MT distribution (DD for QCD)

- Z selection & signal extract.
 - Looser ID for 2nd muon
 - Low background: N(Z) from cut & count

W/Z to electrons

- Electron
 - Et>20 GeV, |eta|<2.5, isolated, conversion veto
- Signal extraction
 - similar to muon channel

Systematics

Muon channels

Source	W channel (%)	Z channel (%)	
Muon reconstruction/identification	3.0	2.5	
Trigger efficiency	3.2	0.7	
Isolation efficiency	0.5	1.0	
Muon momentum scale/resolution	1.0	0.5	
₽ _T scale/resolution	1.0	-	
Background subtraction	3.5	-	
PDF uncertainty in acceptance	2.0	2.0	
Other theoretical uncertainties	1.4	1.6	
TOTAL (without luminosity uncertainty)	6.3	3.8	
Luminosity	11.0	11.0	

Electron channels

Source	W channel (%)	Z channel (%)	
Electron reconstruction/identification	6.1	7.2	
Trigger efficiency	0.6	-	
Isolation efficiency	1.1	1.2	
Electron momentum scale/resolution	2.7	-	
₽ _T scale/resolution	1.4	-	
Background subtraction	2.2	-	
PDF uncertainty in acceptance	2.0	2.0	
Other theoretical uncertainties	1.3	1.3	
TOTAL (without luminosity uncertainty)	7.7	7.7	
Luminosity	11.0	11.0	

Dominant uncertainties:

W->mu: bg subtraction (templates) dominating

else: lepton reco/id/isol eff. (from samples used for T&P to derive MC SF)

W/Z cross section results

W+/W- cross sections and ratio

Lepton charge asymmetry and forward-backward asymmetry

 W lepton charge asymmetry

$$A(\eta) = \frac{d\sigma^{(+)}/d\eta_l - d\sigma^{(-)}/d\eta_l}{d\sigma^{(+)}/d\eta_l + d\sigma^{(-)}/d\eta_l}$$

Constraints on PDFs from ~10pb-1

 Di-muon forwardbackward asymmetry

Expect deviations from SM in presence of new neutral gauge boson

W+jets

- BG subtracted (MT fit) jet multiplicity in W events
 - MC normalized to MCFM NLO cross section

Agreement with simulation within stat. errors

Top (TOP-10-004 + HCP update)

Dilepton

- 2 isolated, opposite charge leptons, Pt>20 GeV, Z-Veto
- Jets with Pt>30 GeV (expect >=2 for Top)
- o tcMET>30 (20) GeV in ee,mumu (emu)
- >=2 JPT jets, Pt>30 GeV

Lepton+Jets

- One isolated high pt e (Pt>30 GeV) or mu (Pt>20 GeV)
- Jets with Pt>30 GeV (expect >=4 for Top)

ICHEP results: L=0.25pb-1

New: Update with L=0.84pb-1 for HCP

Dilepton yields (relaxed selection)

No Z-veto, no MET, no N(jets) requirements

L=0.84pb⁻¹

Rightmost bins contain overflow

Dilepton yields: tighter selection

Z-veto, N(jets)>=1

L=0.84pb⁻¹

Sample	ee	μμ	еµ	
Dilepton $t\overline{t}$	$0.63 \pm 0.09 \pm 0.12$	$0.70 \pm 0.11 \pm 0.13$	$1.70 \pm 0.26 \pm 0.32$	
VV	0.05 ± 0.03	0.05 ± 0.03	0.12 ± 0.06	
Single top - tW	0.04 ± 0.02	0.05 ± 0.03	0.12 ± 0.06	
Drell-Yan $\tau \tau$	0.08 ± 0.04	0.13 ± 0.07	0.19 ± 0.09	
Drell-Yan ee, μμ	4.2 ± 1.1	5.0 ± 1.2	0.04 ± 0.02	
Non-dilepton $t\bar{t}$	$\textbf{0.02} \pm \textbf{0.01}$	0.003 ± 0.002	0.03 ± 0.02	
W+jets	0.06 ± 0.03	$0.000 \begin{array}{l} +0.002 \\ -0.000 \end{array}$	0.07 ± 0.04	
QCD multijets	$0 \ ^{+10}_{-0}$	$0 \begin{array}{c} +10 \\ -0 \end{array}$	$0 \ ^{+10}_{-0}$	
Total simulated	5.1 ± 1.1	5.9 ± 1.2	2.3 ± 0.4	
QCD data-driven	$0.0 \begin{array}{ccc} +0.1 & +0.1 \\ -0.0 & -0.0 \end{array}$	$0.0 ^{ +0.2}_{ -0.0} ^{ +0.2}_{ -0.0}$	$0.0 ^{ +0.1}_{ -0.0} ^{ +0.1}_{ -0.0}$	
W+jets data-driven	$0.2 \begin{array}{ccc} +0.2 & +0.1 \\ -0.0 & -0.0 \end{array}$	$0.0 \begin{array}{ccc} +0.4 & +0.2 \\ -0.0 & -0.0 \end{array}$	$0.0 \begin{array}{ccc} +0.4 & +0.2 \\ -0.0 & -0.0 \end{array}$	
Drell-Yan data-driven	$3.6 \pm 0.6 \pm 1.8$	$4.3 \pm 0.7 \pm 2.1$	N/A	
Data	6	6	2	

Systematics:

•Signal and DY: 15% acceptance (conservative), 15% theory, 11% lumi

•Other backgrounds: 50% (conservative)

Data-driven backgrounds: DY,Wjets: 50%; QCD: 100%

Good agreement observed!

Dilepton: full selection

All cuts applied: Z-Veto, MET, N(jets)>=2

L=0.84pb⁻¹

4 clean ttbar candidates observed ~2.1 signal events expected

Dimuon event with 2 b-tags

Preliminarily reconstr. mass in the range 160–220 GeV/c²

Event passes full selection:

2 muons with opposite charge 2 jets, both w/ good/clear *b*-tags (and secondary vertices!) significant MET (>50 GeV)

Electron+Jets

No b-tagging, no MET cut applied

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
$N_{\text{jets}} \ge 0$	12 ± 2	3.4 ± 0.4	2619 ± 317	180 ± 21	658 ± 73	3472 ± 326	3434
N _{jets} ≥ 1	12 ± 2	3.1 ± 0.4	419 ± 77	92 ± 11	436 ± 62	962 ± 99	1022
N _{jets} ≥ 2	11 ± 2	1.9 ± 0.3	74 ± 18	19 ± 5	85 ± 22	191 ± 29	183
N _{jets} ≥ 3	8.9 ± 1.8	0.70 ± 0.14	13 ± 4	3.3 ± 1.0	14 ± 5	40 ± 7	43
N _{jets} ≥4	4.8 ± 1.2	0.21 ± 0.06	2.6 ± 1.1	0.60 ± 0.23	2.3 ± 1.1	11 ± 2	13

MC Uncertainties (table):

- •Jet energy scale (known to 10%)
- •Luminosity (known to 11%)
- •Cross section unc. (scale,PDF)

L=0.84pb⁻¹

Good agreement observed in all Jet bins!

e+jets in various jet bins

Missing ET (hard to get right, important for any top quark measurement)

M_T(W): transverse W mass (calculated from lepton+MET)

Good agreement Data-Simulation! QCD background important in e+jets!

Muon+jets

No b-tagging, no MET cut applied

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
$N_{\text{jets}} \ge 0$	13 ± 3	4.2 ± 0.4	3708 ± 448	192 ± 29	223 ± 25	4140 ± 450	4142
N _{jets} ≥ 1	13 ± 3	3.9 ± 0.4	552 ± 106	42 ± 12	79 ± 17	690 ± 108	789
$N_{\text{jets}} \ge 2$	13 ± 2	2.3 ± 0.3	92 ± 24	7.1 ± 4.4	10 ± 3	124 ± 25	153
$N_{\text{jets}} \ge 3$	10 ± 2	0.82 ± 0.15	16 ± 5	1.3 ± 0.9	1.3 ± 0.5	29 ± 5	40
$N_{\text{jets}} \ge 4$	5.6 ± 1.4	0.24 ± 0.06	3.1 ± 1.2	0.25 ± 0.18	0.15 ± 0.07	9.3 ±1.9	11

MC Uncertainties (table):

- •Jet energy scale (known to 10%)
- •Luminosity (known to 11%)
- •Cross section unc. (scale,PDF)

L=0.84pb⁻¹

Good agreement observed in all Jet bins!

mu+jets, N(jets)>=0

Excess observed in data at low Pt(mu), MET, MT and HT Consistent with QCD MC being factor ~2 too low

Error band: 100% on QCD (from data-driven methods)

A beautiful mu+jets candidate

reconst. top mass around 210 GeV/c²

masses of 2 untagged jets (3 possible comb.): 104, 105, 151 GeV/c²

Event passes all cuts of full selection

1 high-momentum muon significant MET>100GeV $m_T(W) = 104 \text{ GeV/c}^2$ 4 high- p_T jets, one of which with good *b*-tag

e/mu+jets with b-tagging

- e/mu+jets combined
- Secondary vertex tagger
 (working point with high efficiency and ~1% fake rate)
- For N(jets)>=3:
 - Observed N(data)=30
 - Prediced background N(BG,MC)=5.3

Seeing ttbar events at a rate roughly consistent with NLO cross section, considering experimental (JES,b-tagging) and theoretical (scale, PDF, HF modelling, ...) uncertainties

Conclusions

- Borad range of Standard Model measurements being performed by CMS, and presented at ICHEP
 - Soft QCD und underlying Event
 - Jet Physics
 - Quarkonia and b-Production
 - Electroweak physics (W and Z)
 - First glimpse at the Top
- Most using <250nb-1, now have already >3 pb-1 recorded
- Exceptionally well working and understood detector, already at this "early" stage
- SM measurement are really the groundwork for new Physics searches
- Expect much more soon (e.g. first Top cross section!)

Backup

SM Physics for ICHEP

QCD

- o QCD-09-010 Charged hadrons @ 0.9/2.36 TeV [pub.]
- QCD-10-006 Charged hadrons @ 7 TeV [pub.]
- QCD-10-004 Charged particle multiplicities
- QCD-10-003 Bose-Einstein Correlations [pub.]
- QCD-10-001 Underlying Event @ 0.9TeV [pub.]
- QCD-10-010 Underlying Event @ 7 TeV
- QCD-10-005 Underlying Event from JetArea/Median
- QCD-10-002 Cluster properties from two-particle angular correlations
- o QCD-10-007 Strangeness production
- QCD-10-011 Inclusive Jets
- o QCD-10-012 3-to-2 jet ratio
- o QCD-10-013 Event shapes
- o QCD-10-014 Jet transverse structure
- QCD-10-015 Dijet azimuthal decorrelations

SM Physics for ICHEP (cont.)

- Forward Physics
 - FWD-10-001 Observation of Diffraction
 - o FWD-10-002 Forward Energy Flow
- B-physics / Quarkonia
 - o BPH-10-002 J/Psi cross section
 - o BPH-10-003 Upsilon cross section
 - BPH-10-007 Open beauty with muons
 - o BPH-10-009 b-jet cross section
- Electroweak Physics
 - o EWK-10-002 W/Z cross section and more
- Top physics
 - TOP-10-004 Top selection and candidates

Post-ICHEP updates

- QCD
 - o QCD-10-008 Charged hadron Pt spectra
 - Z1/Z2 PYTHIA Tunes Rick Field
- TOP
 - Updated public plots for 840nb-1 for HCP/PIC
- PAG Jamboree Sept 01-02 (CMS internal)
 - http://indico.cern.ch/conferenceDisplay.py?confld=105457

Forward Physics

- FWD-10-001
 - Observation of diffraction in min. bias events
 - Sum(E+Pz) calculated from calo towers (incl. HF)
 - Proportional to p momentum loss

- FWD-10-002
 - Forward (HF) energy flow in MB and dijet events

Inclusive b cross-section with Muons (BPH-10-007)

$$\sigma(pp \rightarrow b + X \rightarrow \mu + X', p_{\perp}^{\mu} > 6 \,\text{GeV}, |\eta^{\mu}| < 2.1)$$

 Cross section measured by fitting templates to Pt(rel) distribution in Pt/Eta bins

 $\sigma = (1.48 \pm 0.04_{\text{stat}} \pm 0.22_{\text{syst}} \pm 0.16_{\text{lumi}}) \, \mu \text{b}^{1.}$ $\sigma_{\text{PYTHIA}} = 1.8 \, \mu \text{b},$ $\sigma_{\text{MC@NLO}} = [0.84^{+0.36}_{-0.19}(\text{scale}) \pm 0.08(m_b) \pm 0.04(\text{pdf})] \, \mu \text{b}.$

Dilepton Event Yields

Relaxed selection:

L=0.84pb⁻¹

No Z-veto, no MET, N(jets) requirements

Process	ee	μμ	еµ
Dilepton $t\bar{t}$	$0.84 \pm 0.13 \pm 0.16$	$0.94 \pm 0.14 \pm 0.17$	$1.75 \pm 0.26 \pm 0.33$
VV	0.23 ± 0.12	0.25 ± 0.13	0.35 ± 0.18
Single top - tW	0.06 ± 0.03	0.07 ± 0.03	0.13 ± 0.07
Drell-Yan $ au au$	0.6 ± 0.3	0.7 ± 0.4	1.3 ± 0.7
Drell-Yan ee, μμ	298 ± 74	343 ± 86	0.1 ± 0.1
Non-dilepton $t\bar{t}$	0.02 ± 0.01	0.004 ± 0.002	0.03 ± 0.02
W+jets	0.3 ± 0.1	0.01 ± 0.01	0.3 ± 0.2
QCD multijets	$0 \ ^{+10}_{-0}$	$0.00 \begin{array}{c} +10 \\ -0 \end{array}$	$0 \ ^{+10}_{-0}$
Total simulated	300 ± 74	345 ± 86	4.0 ± 0.8
Data	305	294	6

Systematics:

•Signal and DY: 15% acc*eff (conservative), 15% theory, 11% lumi

•Other backgrounds: 50% (conservative)

Good agreement observed!

Are we sensitive to Pile-up?

Do have non-negligible pileup in recent data <N>~0.9 Simulation is without pileup Compare data with one vertex vs data with >=1 vertex

L=0.84pb⁻¹

0.05

3 ≥ 4 Jet Multiplicity So far little effect on sensitive distributions (e.g. isolation, MET)

90 10 p_τ [GeV/c]

0

2

10⁻²

10⁻³

30