

Top Quark Studies with CMS

Frank-Peter Schilling (KIT) on behalf of the CMS collaboration

The TOP

Top Physics at the LHC

- Precise SM measurements
 - Heaviest known elementary particle (large Yukawa coupling)
 - Constraints on Higgs mass
 - Unique window on bare quarks due to short lifetime
- A window to new physics
 - New physics might couple preferentially to top
 - New particles may decay to top
 - Non-standard couplings
- In many new physics scenarios (e.g. SUSY) top is dominant BG
- Great tool to calibrate detector
 - Jet energy scale, b-jet eff.

Top pair production and decay

Q**2= 10000 GeV**2

~85% quark-induced at Tevatron

~85% gluon-induced at LHC

0.6

Data and MC samples

Dataset

- \circ L = 840nb-1
- Data taken up to 11th August,
 certified on 13th August
- Update of results of PAS TOP-10-004 and shown at ICHEP (up to 250nb-1)

CMS: Integrated Luminosity 2010

Monte Carlo samples

- o ttbar+jets, W/Z+jets: Madgraph, matching ME with parton showers
 - V+bb/c(c)+jets matrix elements included
- Cross sections normalized to inclusive (N)NLO cross sections
 - sigma(ttbar, NLO)=157pb (MCFM), mtop=172.5 GeV
 - sigma(W->Inu,NNLO)=31314pb (FEWZ)
- QCD: PYTHIA (filtered at gen level)

Dilepton: Event selection

- Single lepton triggers
 - mu+X (Pt>9 GeV),e+X (Pt>15 GeV)
- Two isolated, opposite charge leptons (ee,mumu,emu)
 - Pt>20 GeV, |eta|<2.5(mu),2.4(e)
 - Rel. isolation < 0.15

$$\text{Rel.isol.} = \frac{\displaystyle \sum_{R < 0.3} p_T^{\text{track}} + \sum_{R < 0.3} p_T^{\text{ECAL}} + \sum_{R < 0.3} p_T^{\text{HCAL}}}{p_T(\text{lepton})}$$

- Z-boson veto (ee,mumu)
 - o |M(II)-M(Z)|>15 GeV
- Missing Et (MET)
 - Using calorimeter & tracking
 - MET>30(20) GeV in ee,mumu (emu)

- Jets
 - Anti-Kt (R=0.5)
 - Using calorimeter & tracking
 - o Pt>30 GeV, |eta|<2.4
 - o Expect >=2 jets for ttbar

A word on b-tagging

b-tagging: cruical ingredient for top physics
Use simple and robust tagging algorithms for early data

CMS PAS BTV-10-001

- "Track counting" tagger
 - Uses IP significance of n-th track as discriminator

- Secondary vertex tagger
 - Uses discriminator based on 3D flight distance

Scale factors Data/MC for efficiency / mistag rate close to one!

Dilepton Event Yields

Relaxed selection:

L=0.84pb⁻¹

No Z-veto, no MET, N(jets) requirements

Process	ee	μμ	еµ
Dilepton $t\bar{t}$	$0.84 \pm 0.13 \pm 0.16$	$0.94 \pm 0.14 \pm 0.17$	$1.75 \pm 0.26 \pm 0.33$
VV	0.23 ± 0.12	0.25 ± 0.13	0.35 ± 0.18
Single top - tW	0.06 ± 0.03	0.07 ± 0.03	0.13 ± 0.07
Drell-Yan $ au au$	0.6 ± 0.3	0.7 ± 0.4	1.3 ± 0.7
Drell-Yan ee, μμ	298 ± 74	343 ± 86	0.1 ± 0.1
Non-dilepton $t\bar{t}$	0.02 ± 0.01	0.004 ± 0.002	0.03 ± 0.02
W+jets	0.3 ± 0.1	0.01 ± 0.01	0.3 ± 0.2
QCD multijets	$0 \ ^{+10}_{-0}$	$0.00 \begin{array}{c} +10 \\ -0 \end{array}$	$0 \ ^{+10}_{-0}$
Total simulated	300 ± 74	345 ± 86	4.0 ± 0.8
Data	305	294	6

Systematics:

•Signal and DY: 15% acc*eff (conservative), 15% theory, 11% lumi

•Other backgrounds: 50% (conservative)

Good agreement observed!

Data vs MC (relaxed selection)

No Z-veto, no MET, N(jets) requirements

Dilepton mass [GeV/c²]

L=0.84pb⁻¹

Rightmost bins contain overflow

Data driven Drell-Yan Background

Estimate Drell-Yan background outside Z-veto region from events inside:

ratio outside/inside from DY simulation

$$N_{\text{out}}^{ee,\text{data}} = R_{\text{out/in}}^{ee} \left(N_{\text{in}}^{ee,\text{data}} - 0.5 N_{\text{in}}^{e\mu,\text{data}} k_{ee} \right)$$

correction for non-DY contribution in Z-veto region from eµ sample

Sample	ID, ISO, Z-veto	with $N_{\rm jet} \geq 1$	with $N_{\rm jet} \ge 2$ and $E_T > 30$ GeV
ee			
DY in simulation	26 ± 6	4.2 ± 1.1	0.04 ± 0.01
DY estimate in data	$26\pm1.6\pm13$	$3.6 \pm 0.6 \pm 1.8$	$0.4 \pm 0.2 \pm 0.2$
μμ			
DY in simulation	31 ± 8	5.0 ± 1.2	0.07 ± 0.02
DY estimate in data	$27\pm1.6\pm13$	$4.3\pm0.7\pm2.1$	$0.21 {}^{+0.23}_{-0.21} \pm 0.11$

Agreement between simulation and data-driven estimate

Data-driven QCD, W+jets backgrounds

- "Fake" lepton backgrounds:
 - o W+jets : one fake lepton
 - QCD: two fake leptons
- Determine a 'tight-to-lose ratio' (TL) in jet-triggered sample
- Apply to events where one (both) leptons pass loose, but fail tight lepton selection
- Weighed sum yields background estimate
- 50% systematics per "fake" lepton

$$N_{nn}^{QCD} = \sum_{i,j} \frac{TL_iTL_j}{(1-TL_i)(1-TL_j)} N_{\overline{nn}}^{ij}$$

$$N_{nn}^{WJets} = \sum_{i,j} \frac{TL_i}{(1 - TL_i)} N_{\overline{n}n}^{ij}$$

Event yields: tighter selection

Z-veto, N(jets)>=1

L=0.84pb⁻¹

Sample	ee	μμ	еµ	
Dilepton $t\overline{t}$	$0.63 \pm 0.09 \pm 0.12$	$0.70 \pm 0.11 \pm 0.13$	$1.70 \pm 0.26 \pm 0.32$	
VV	0.05 ± 0.03	0.05 ± 0.03	0.12 ± 0.06	
Single top - tW	0.04 ± 0.02	0.05 ± 0.03	0.12 ± 0.06	
Drell-Yan $ au au$	0.08 ± 0.04	0.13 ± 0.07	0.19 ± 0.09	
Drell-Yan ee, μμ	4.2 ± 1.1	5.0 ± 1.2	0.04 ± 0.02	
Non-dilepton $t\bar{t}$	0.02 ± 0.01	0.003 ± 0.002	0.03 ± 0.02	
W+jets	0.06 ± 0.03	$0.000 \begin{array}{l} +0.002 \\ -0.000 \end{array}$	0.07 ± 0.04	
QCD multijets	$0 \ ^{+10}_{-0}$	$0 \begin{array}{c} +10 \\ -0 \end{array}$	$0 \ ^{+10}_{-0}$	
Total simulated	5.1 ± 1.1	5.9 ± 1.2	2.3 ± 0.4	
QCD data-driven	$0.0 \begin{array}{ccc} +0.1 & +0.1 \\ -0.0 & -0.0 \end{array}$	$0.0 ^{ +0.2}_{ -0.0} ^{ +0.2}_{ -0.0}$	$0.0 ^{ +0.1}_{ -0.0} ^{ +0.1}_{ -0.0}$	
W+jets data-driven	$0.2 \begin{array}{ccc} +0.2 & +0.1 \\ -0.0 & -0.0 \end{array}$	$0.0 \begin{array}{ccc} +0.4 & +0.2 \\ -0.0 & -0.0 \end{array}$	$0.0 \begin{array}{ccc} +0.4 & +0.2 \\ -0.0 & -0.0 \end{array}$	
Drell-Yan data-driven	$3.6 \pm 0.6 \pm 1.8$	$4.3 \pm 0.7 \pm 2.1$	N/A	
Data	6	6	2	

Systematics:

•Signal and DY: 15% acc*eff (conservative), 15% theory, 11% lumi

•Other backgrounds: 50% (conservative)

Data-driven backgrounds: DY,Wjets: 50%; QCD: 100%

Good agreement observed!

Tightening the selection

N(jets), with Z-Veto, MET requirement applied

Tightening the selection

MET, with Z-veto, N(jets)>=2 requirements applied

Dilepton: full selection

All cuts applied: Z-Veto, MET, N(jets)>=2

L=0.84pb⁻¹

Track-counting tagger

4 clean ttbar candidates observed ~2.1 signal events expected

A beautiful e-mu candidate

Muon Pt=60 GeV Electron Pt=80 GeV 2 jets, 1 b-tag MET=49 GeV

Mass hypothesis consistent with being a ttbar event

Dimuon event with 2 b-tags

the range 160-220 GeV/c²

Event passes full selection:

2 muons with opposite charge 2 jets, both w/ good/clear *b*-tags (and secondary vertices!) significant MET (>50 GeV)

Lepton+jets: Event selection

- Considered modes:
 - o e+jets
 - o mu+jets
- Single lepton triggers
- Exactly one isolated lepton
 - o Muons: Pt>20 GeV, | eta | < 2.1
 - Rel. Isolation < 0.05
 - Electrons: Pt>30 GeV, |eta|<2.4
 - Rel. Isolation, conversion veto
- Missing Et (MET)
 - Not used in event selection, but to reconstruct transverse Mass

- Jets
 - Anti-Kt (R=0.5)
 - o Pt>30 GeV, |eta|<2.4
 - o Expect >=4 jets for ttbar
 - No b-tagging in baseline selection

Electron+Jets

No b-tagging, no MET cut applied

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
$N_{\text{jets}} \ge 0$	12 ± 2	3.4 ± 0.4	2619 ± 317	180 ± 21	658 ± 73	3472 ± 326	3434
N _{jets} ≥ 1	12 ± 2	3.1 ± 0.4	419 ± 77	92 ± 11	436 ± 62	962 ± 99	1022
N _{jets} ≥ 2	11 ± 2	1.9 ± 0.3	74 ± 18	19 ± 5	85 ± 22	191 ± 29	183
N _{jets} ≥ 3	8.9 ± 1.8	0.70 ± 0.14	13 ± 4	3.3 ± 1.0	14 ± 5	40 ± 7	43
N _{jets} ≥4	4.8 ± 1.2	0.21 ± 0.06	2.6 ± 1.1	0.60 ± 0.23	2.3 ± 1.1	11 ± 2	13

MC Uncertainties (table):

- •Jet energy scale (known to 10%)
- •Luminosity (known to 11%)
- •Cross section unc. (scale,PDF)

L=0.84pb⁻¹

Good agreement observed in all Jet bins!

Data-driven QCD estimate: template fit

- First tests of DD methods in low N(jets) bins
- e+jets: Fit sum of templates in low MET or HT(lep) region
 - QCD template from multijet sample (near-miss electrons or large EM jets)
- Predict N(QCD) in signal region

N(jets)>=0	QCD MC	QCD estimate
MET>25 GeV	12.2+/-0.2	19+/-7
HT(lep)>60 GeV	26.0+/-0.3	39+/-11

N(jets)>=1	QCD MC	QCD estimate
MET>25 GeV	5.3+/-0.1	8+/-5
HT(lep)>60 GeV	12.4+/-0.2	10+/-4

e+jets: consistent with MC

mu+jets: see later

Data-driven QCD II: Isolation extrapolation

- Fit function to isolation distribution in non-isolated (QCD dominated) region
- Extrapolate to isolated (W-like) region

Isolation extrapolation method (e +jets)					
Fit Range	$N_{\rm QCD}^{est.}(\geq 0$ -jet)	$N_{\rm QCD}^{est.}(\geq 1$ -jet)			
0.1–1.6	67 ± 9	40 ± 6			
0.2–1.6	73 ± 13	46 ± 9			
0.3–1.6	71 ± 17	45 ± 12			
Average N _{OCD}	70 ± 35	44 ± 22			
Prediction N_{QCD}^{MC}	63 ± 7	42 ± 6			

Agreement between data-driven QCD estimate and simulation More importantly: result consistent with template method (NB no MET,HT cuts applied here!)

e+jets in various jet bins

Missing ET (hard to get right, important for any top quark measurement)

M_T(W): transverse W mass (calculated from lepton+MET)

Good agreement Data-Simulation! QCD background important in e+jets!

Muon+jets

No b-tagging, no MET cut applied

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
$N_{\text{jets}} \ge 0$	13 ± 3	4.2 ± 0.4	3708 ± 448	192 ± 29	223 ± 25	4140 ± 450	4142
N _{jets} ≥ 1	13 ± 3	3.9 ± 0.4	552 ± 106	42 ± 12	79 ± 17	690 ± 108	789
N _{jets} ≥ 2	13 ± 2	2.3 ± 0.3	92 ± 24	7.1 ± 4.4	10 ± 3	124 ± 25	153
$N_{\text{jets}} \ge 3$	10 ± 2	0.82 ± 0.15	16 ± 5	1.3 ± 0.9	1.3 ± 0.5	29 ± 5	40
$N_{\text{jets}} \ge 4$	5.6 ± 1.4	0.24 ± 0.06	3.1 ± 1.2	0.25 ± 0.18	0.15 ± 0.07	9.3 ±1.9	11

MC Uncertainties (table):

- •Jet energy scale (known to 10%)
- •Luminosity (known to 11%)
- •Cross section unc. (scale,PDF)

L=0.84pb⁻¹

Good agreement observed in all Jet bins!

mu+jets, N(jets)>=0

Excess observed in data at low Pt(mu), MET, MT and HT Consistent with QCD MC being factor ~2 too low

Error band: 100% on QCD (from data-driven methods)

$\overline{\text{mu+jets}}$, $\overline{\text{N(jets)}} = 1,2$

Consistent with QCD too low by factor ~2, indep. of N(jets)

Data slightly above MC also where QCD less important

Note: expect significant JES & theory uncertainties (not incl. in error bars!)

A beautiful mu+jets candidate

reconst. top mass around 210 GeV/c²

masses of 2 untagged jets (3 possible comb.): 104, 105, 151 GeV/c²

Event passes all cuts of full selection

1 high-momentum muon significant MET>100GeV $m_T(W) = 104 \text{ GeV/c}^2$ 4 high- p_T jets, one of which with good b-tag

Are we sensitive to Pile-up?

Do have non-negligible pileup in recent data <N>~0.9 Simulation is without pileup Compare data with one vertex vs data with >=1 vertex

L=0.84pb⁻¹

B ≥ 4 Jet Multiplicity So far little effect on sensitive distributions (e.g. isolation, MET)

90 100 p_τ [GeV/c]

0

2

10⁻³

30

Enriching the b-content

- "Muon-in-jet"
 - mu+jets: request at least one jet associated with a muon within dR<0.4
 - Sensitive to semileptonic bdecays in jets
- For N(jets)>=3, observe 7
 events, consistent with
 ttbar signal plus ~2.5
 background events

e/mu+jets with b-tagging

- e/mu+jets combined
- Secondary vertex tagger (working point with ~1% fake rate)
- For N(jets)>=3:
 - Observed N(data)=30
 - Prediced background N(BG,MC)=5.3
 - Predicted signal N(ttbar,MC)=15

Seeing ttbar events at a rate roughly consistent with NLO cross section, considering experimental (JES,b-tagging) and theoretical (scale, PDF, HF modelling, ...) uncertainties

Conclusions

- Analyzed first L=0.84pb-1 of 7TeV data
 - Updated with respect to ICHEP results (L~250nb-1)
- Event yields in background dominated regions ~consistent with expectations, within uncertainties
 - Tests of data-driven background estimation
- Enrich signal by going to high N(jets) and employing b-tagging
- Observed number of candidates approx. consistent with ttbar expectation, on top of small backgrounds
- Strong evidence for excellent performance of CMS detector (jets, MET, leptons, b-tagging)!

Established Top signal at LHC, first cross sections will come soon!

Backup

Jet multiplicity (relaxed selection)

Missing Transverse Energy (relaxed sel.)

Dilepton invariant mass (relaxed sel.)

b-tag multiplicity (relaxed sel.)

b-tag multiplicity (full selection)

With Z-veto, MET, N(jets)>=2 cuts applied

mu+Jets, >=1 jets

mu+Jets, >=2 jets

e/mu+jets+b-tag

e+jets

mu+jets

Compact Muon Solenoid

Magnetic field

: 3.8 T