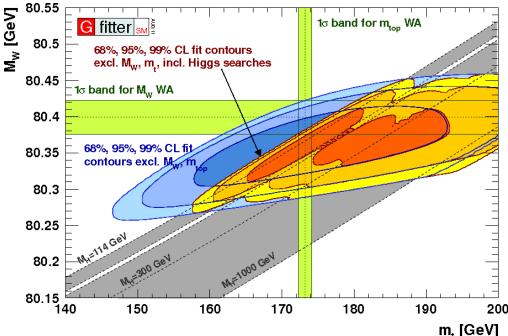


Top Quark Physics with CMS

Frank-Peter Schilling
Karlsruhe Institute of Technology (KIT)

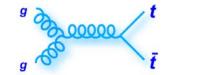
Göttingen, 20 January 2012

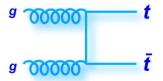

Outline

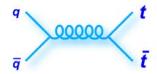
- Motivation & Introduction
- Physics Objects for Top
- MC Simulation
- Measurements performed so far:
 - Top pair cross section
 - Top mass and top-antitop mass difference
 - Single top cross section (t and tW channel)
 - Search for resonances in top pair invariant mass
 - Charge Asymmetry & search for same-sign top pairs
- 6 journal papers, many preliminary results (PAS notes)
- All CMS public results available from
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Why is Top Physics interesting?

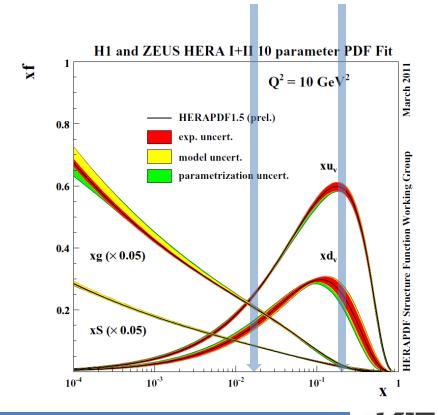
- Heaviest SM particle
- Special role in EWK symmetry breaking?
- Sensitive to Higgs mass through EWK loop corrections
 - Low Higgs mass peferred



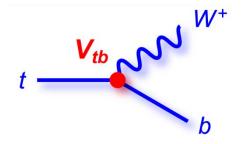

- New physics may couple preferentially to top
 - e.g. search for new particles decaying into top (pairs) → M(ttbar)
- The top quark may be special
 - New physics may be hidden in e.g. spin structure
- Top production may be background to SUSY and other NP


Top quark pair production

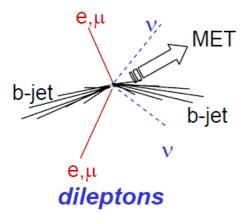
Gluon fusion (dominant at LHC)

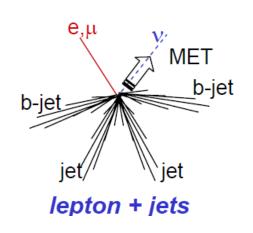


Quark-antiquark annihilation


- Total cross section at 7 TeV:
 - o NLO (MCFM) $\sigma_{t\bar{t}}^{NLO} = 158^{+23}_{-24} \text{ pb}$
 - approximate NNLO
 - Kidonakis, PRD 82 (2010) 114030 $\sigma_{t\bar{t}}=163^{+11}_{-10}~\rm pb$ Langenfeld, Moch, Uwer, PRD80 (2009) 054009
 - $\sigma_{t\bar{t}} = 164^{+10}_{-13} \text{ pb}$
 - Ahrens et al., JHEP 1009 (2010) 097 $\sigma_{t\bar{t}} = 149 \pm 11 \text{ pb}$
 - Cacciari et al, arXiv:1111.5869 $\sigma_{t\bar{t}} = 159^{+12}_{-14} \text{ pb}$

	LHC	Tevatron
gg	~85%	~10%
qq	~15%	~90%




Top quark decays

- Top decays before it can hadronize
 - almost exclusively t->Wb

Top pair event classification according to W decays

Branching

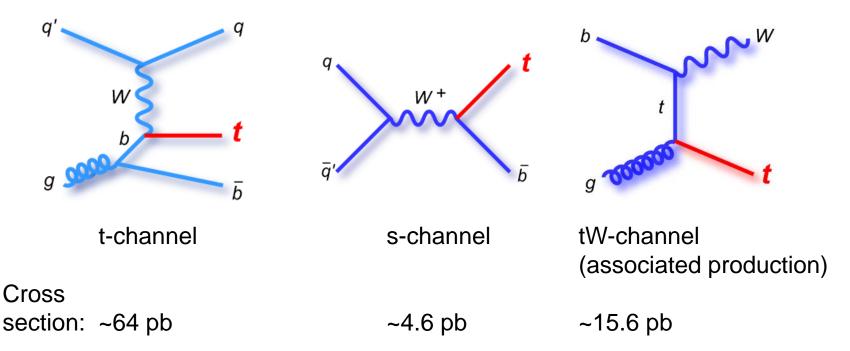
ratio:

~5%

~30%

~46%

Backgrounds: few


(mainly Z+jets)

moderate (mainly W+jets)

huge (mainly QCD)

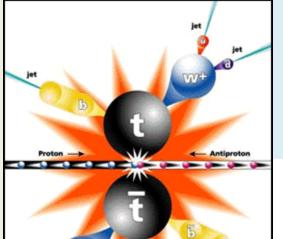
Single Top Production

Single top quarks are produced through electroweak interaction

Kidonakis, NLO+NNLL:

t-channel: PRD 83 (2011) 091503 s-channel: PRD 81 (2010) 054028 tW-channel: PRD 82 (2010) 054018

Difficult signature (fewer jets)
Large backgrounds from ttbar, V+jets
tW-channel interfers with ttbar at higher orders


LHC Top Physics Program

Production

- Pair cross section (QCD)
- Single top cross section (EWK)
- Differential cross sections
 - Compare with theory
 - Validate ME+PS models
- Charge asymmetry
- Spin correlations

Decay

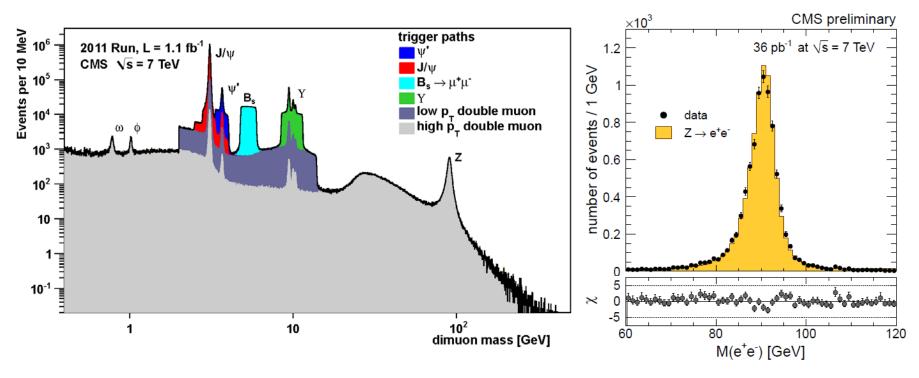
- Branching ratios
- \circ t->Wb / t->Wq
- W-helicity in top decays (W->tb coupling)

Intrinsic Properties

- Mass (difference)
- o Charge
- o Lifetime

New physics

- New particles decaying to top
- BSM top decays
- New physics with top-like signature

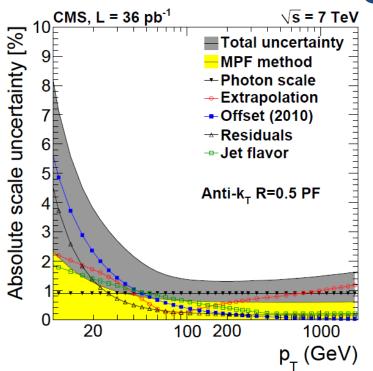

Physics Objects for Top Physics

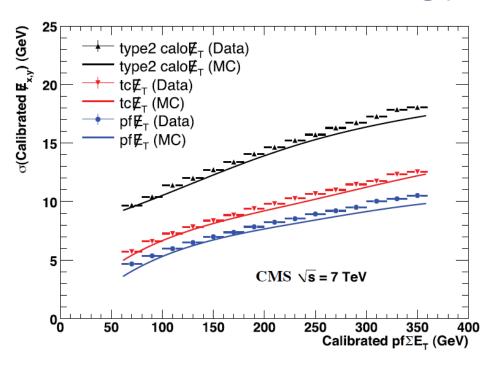
- Electrons and muons (also taus)
 - Identification with high efficiency & low fake rate
 - Precise momentum measurement
 - Isolation (identify leptons from W-decays, suppress QCD)
 - Key for triggering top events
- Jets
 - Precise measurement with small jet energy scale uncertainty
- Missing transverse energy (MET)
 - Reconstruct transverse neutrino momentum
 - Reject QCD, Z+jets background
- b-jet identification
 - High efficiency (and low failure rate) to tag jets from b-quarks
 - Helps with jet pairing (e.g. for top mass)

Top physics needs ~all physics objects well understood!

Muons and Electrons

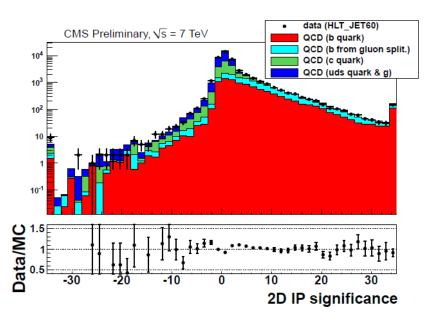
- Muon Pt resolution for Top 1-2% (tracker dominated)
- Good trigger and ID capabilities using redundant subdetectors

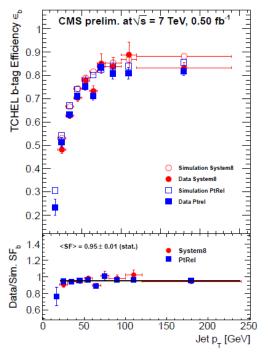

- Excellent ECAL resolution (~1% for TOP)
- Good track matching (fit accounting for Bremsstrahlung)
- ID based on shower shape, H/E, etc.

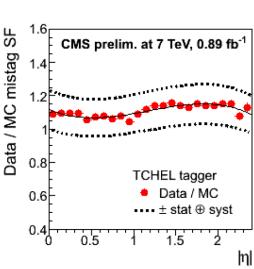


9

Jets and Missing Transverse Energy






- Particle Flow ("PF", calo&tracking&muons combined)
- Jets defined using anti-kT algo (dR=0.5)
- Jet energy scale uncertainty <2% for Pt>40 GeV
- Jet Pt resolution 10-15%
- MET resolution vastly improved with PF
- Remove PU component by vertex assoc. (ch.) / jet area method (neutr.)

b-jet Identification

- Crucial ingredient: great tracker performance and alignment
- Top analyses so far mostly use
 - Count tracks with large IP
 - Secondary vertex reconstruction
- Complex algos commissioned

- Data-driven efficiency & mistag rate determination
- SF(Data/MC) close to unity
 - known to ~10% for b-eff
 - known to ~10...20% for mistag rate

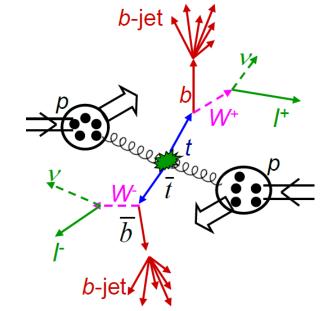
MC Simulation and Theory Uncertainties

- Use MADGRAPH to simulate top signal and most important backgrounds (W/Z+jets)
 - Matrix elements with up to 3 (tt) or 4 (W/Z) extra jets
 - ME+PS matching using MLM prescription
 - \circ Scales set as $Q^2 = M_{t.W.Z}^2 + \sum P_{T.iets}^2$
 - Cross sections rescaled to inclusive (N)NLO values
- Dedicated samples to estimate modelling uncertainties, varying e.g.
 - o scale Q by factors 2.0 and 0.5
 - amount of ISR/FSR radiation
 - ME-PS matching scale by factors 2.0 and 0.5
 - MC@NLO, POWHEG as alternate signal generators
 - NB new TOPLHCWG started to assess these issues with ATLAS+TH
- Use data-driven backgrounds where possible

20/01/2012

Outline

- Top pair cross section
- Top mass (difference)
- Single top cross section
- Top pair invariant mass distribution
- Charge asymmetry & same-sign tops

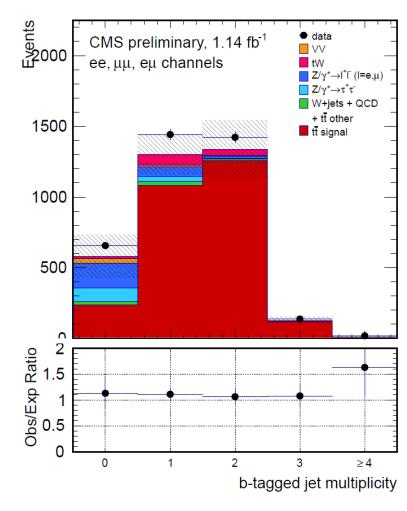


Dilepton channel: Event selection

- Inclusive double lepton triggers
 - o di-muons (Pt>7/7...13/8 GeV)
 - o di-electrons (Pt>17/8 GeV)
 - o muon-electron (Pt>17/8+8/17 GeV)
- Two isolated, opposite charge leptons (ee,mumu,emu)
 - Pt>20 GeV, |eta|<2.4(mu),2.5(e)
 - Good ID, conversion rejection for electrons
 - o Rel. isolation < 0.15 (0.17)

$$\text{Rel.isol.} = \frac{\displaystyle \sum_{R < 0.3} p_T^{\text{track}} + \sum_{R < 0.3} p_T^{\text{ECAL}} + \sum_{R < 0.3} p_T^{\text{HCAL}} }{p_T(\text{lepton})}$$

- Z-boson veto (ee,mumu)
 - |M(II)-M(Z)|>15 GeV
- Missing Et (MET)
 - MET>30 GeV (only for ee,mumu)

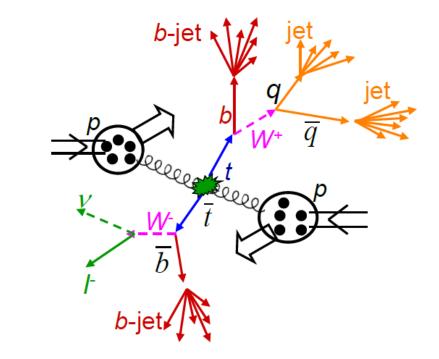

- Jets
 - o Pt>30 GeV, |eta|<2.5
- b-jet identification
 - Track-counting algorithm
 - Here: eff ~80%, mistag rate 10%

Top pair cross section in dileptons (PAS TOP-11-005, L=1.1/fb)

Counting experiment in dilepton final state: II + 2jets + MET + 1btag Measure separately and combine ee,mumu,emu DY, QCD, W+jets BG estimated from data

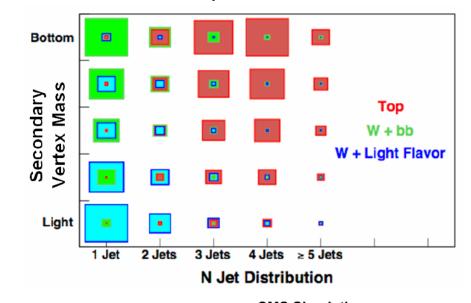
Source	ee	μμ	eμ
Dilepton t t	$427.5 \pm 19.7 \pm 44.5$	$559.3 \pm 22.9 \pm 56.3$	$1487.2 \pm 37.3 \pm 139.2$
VV	$2.6 \pm 1.6 \pm 0.8$	$3.4 \pm 1.9 \pm 1.1$	$6.9 \pm 2.6 \pm 2.2$
Single top - tW	$22.9 \pm 4.8 \pm 7.3$	$28.9 \pm 5.4 \pm 9.2$	$73.4 \pm 8.6 \pm 23.3$
Drell-Yan $\tau\tau$	$6.9 \pm 2.6 \pm 2.2$	$8.8 \pm 3.0 \pm 2.9$	$27.3 \pm 5.2 \pm 8.8$
Drell-Yan ee, μμ	$38.2 \pm 4.3 \pm 19.1$	$50.5 \pm 5.1 \pm 25.2$	-
QCD/W+jets	$2.9 \pm 4.3 (tot.)$	$7.6 \pm 4.7 (tot.)$	30.0 ± 12.0 (tot.)
Total background	73.6 ± 22.2 (tot.)	99.1 ± 28.6 (tot.)	137.6 ± 29.6 (tot.)
Data	589	688	1742
Cross section ph	1000 00 21 4 05	1650 171 105 175	$160.0 \pm 4.4 \pm 16.2 \pm 7.6$

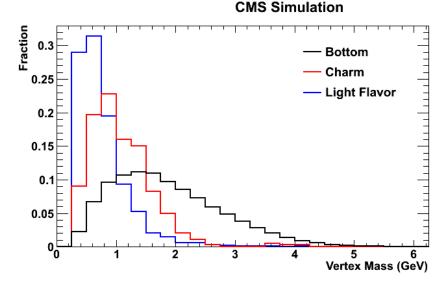
Source	ee	μμ	еμ
Lepton efficiencies	3.0	1.6	2.3
Lepton selection model	4.0	4.0	4.0
Jet and E_T energy scale	1.9	1.7	1.9
B-tagging	5.0	5.0	5.0
Pileup	4.0	4.0	4.0
Branching ratio	1.7	1.7	1.7
Decay model (from [9])	2.0	2.0	2.0
Event Q^2 scale (from [9])	2.3	2.3	1.7
Top quark mass (from [9])	2.6	2.6	1.5
Jet and \mathbb{Z}_T model (from [9])	3.2	3.2	0.4
Shower model (from [9])	0.7	0.7	0.7
Total Systematic	10.0	9.6	8.8
Luminosity	4.5	4.5	4.5



 $\sigma_{\rm t\bar{t}} = 169.9 \pm 3.9 \; ({\rm stat.}) \pm 16.3 \; ({\rm syst.}) \pm 7.6 \; ({\rm lumi.}) {\rm pb}$

Lepton+jets: Event selection

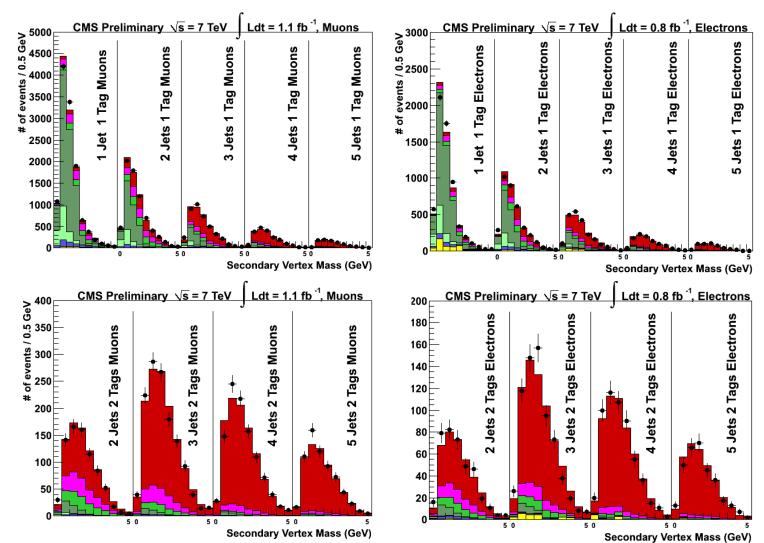

- Considered modes:
 - o e+jets, mu+jets
- Single lepton triggers used
 - Muons (Pt>30 GeV)
 - Electrons (Pt>27...42 GeV)
- Exactly one isolated lepton
 - Muons: Pt>35 GeV,|eta|<2.1
 - Rel. Isolation < 0.125
 - Electrons: Pt>45 GeV, |eta|<2.5
 - Rel. Isolation, conversion veto
- Jets
 - o Pt>30 GeV, |eta|<2.4



- Missing transverse energy
 - MET>20 (30) GeV for mu(e)
- b-tagging:
 - SV tagging algorithm used

Top pair cross section in I+jets with b-tagging (TOP-11-003, L=0.8-1.1/fb)

- Use events with >=1 b-tag
 - Secondary vertex (SV) algorithm
- Template fit of SV mass in 2D N(jets), N(tags) plane
 - Separation of signal and various backgrounds
- Most important systematics fitted in situ (nuisance parameters in profile likelihood)
 - Jet energy scale
 - B-tag efficiency
 - o W+jets ren./fac. scale



Top pair cross section in e/mu+jets+btag (PAS TOP-11-003, L=0.8-1.1/fb)

Fit result for e+jets, mu+jets, 1 tag, 2 tag samples

Data

Top

Wbx

Wcx

QCD

Single Top

W+LF Jets

+ Jets

Top pair cross section in I+jets with b-tagging (TOP-11-003, L=0.8-1.1/fb)

Obtained result for BG normalizations:

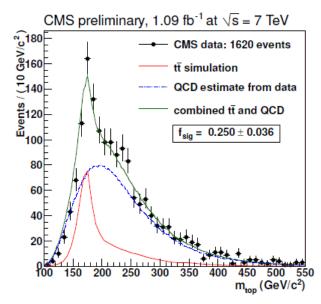
BG scale factor	Fit result
W+b scale factor (w.r.t. MC sc. to incl. NNLO)	1.2 +/- 0.3
W+c-jets scale factor (w.r.t. MC sc. to incl. NNLO)	1.7 +/- 0.1

JES/ b-tag SF consistent with input, but uncertainty reduced!

Source	Muon	Electron	Combined
	Analysis	Analysis	Analysis
Quantity	Uncertainty (%)		
Lepton ID/reco/trigger	3.4	3	3.4
E _T resolution due to unclustered energy	< 1	< 1	< 1
tt +jets Q² scale	2	2	2
ISR/FSR	2	2	2
ME to PS matching	2	2	2
Pile-up	2.5	2.6	2.6
PDF	3.4	3.4	3.4
Profile Likelihood Parameter	Uncertainty (%)		
Jet energy scale and resolution	4.2	4.2	3.1
<i>b</i> -tag efficiency	3.3	3.4	2.4
W+jets Q² scale	0.9	0.8	0.7
Combined	7.8	7.8	7.3

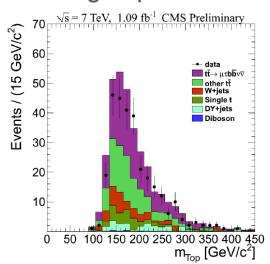
Systematic uncertainties extracted in the fit

Result:


$$\sigma_{t\bar{t}} = 164.4 \pm 2.8 (\text{stat.}) \pm 11.9 (\text{syst.}) \pm 7.4 (\text{lum.}) \text{ pb}$$

Total uncertainty 8.7% (most precise CMS indiv. Measurement)

tau-mu and hadronic channels


- Hadronic channel (TOP-11-007, L=1.1/fb
 - 6 jets, 2 tight b-tags
 - QCD shape from data
 - Fit m(top) distribution

Dominant systematics: JES, b-tagging, background model

$$\sigma_{\rm t\bar{t}} = 136 \pm 20 \, ({\rm stat.}) \pm 40 \, ({\rm sys.}) \pm 8 \, ({\rm lumi.}) \, {\rm pb}$$

- tau-mu dilepton channel (TOP-11-006, L=1.1/fb)
 - Tau reconstruction using 'hadron plus strips' algorithm
 - 1mu+1tau+2jets+1btag+MET
 - Counting experiment

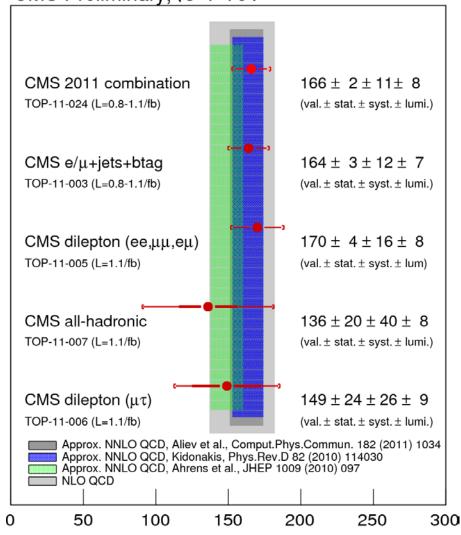
Dominant systematics: tau fake BG (from data), tau ID

 $\sigma_{\rm t\bar{t}} = 148.7 \pm 23.6 ({\rm stat.}) \pm 26.0 ({\rm syst.}) \pm 8.9 ({\rm lumi.}) ~\rm pb$

Top pair cross section combination (PAS TOP-11-024)

CMS Preliminary,√s=7 TeV

NEW (November 2011)

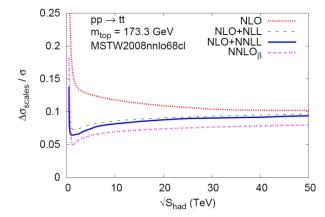

Method:

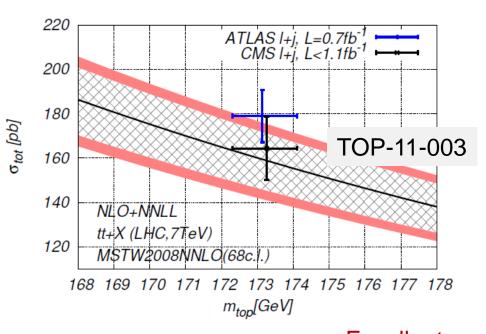
start from I+jets profile likelihood and include other channels

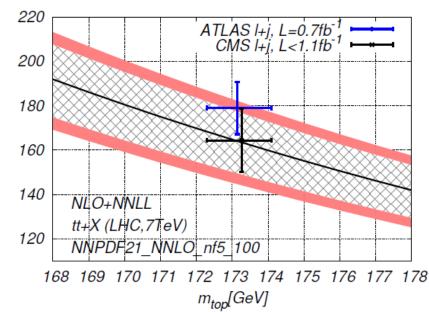
cross check with BLUE

Precision: 8%

Start to become sensitive to differences between various approximations to NNLO theory!


$$\sigma_{t\bar{t}} = 165.8 \pm 2.2 (\text{stat.}) \pm 10.6 (\text{syst.}) \pm 7.8 (\text{lumi.}) \text{ pb}$$

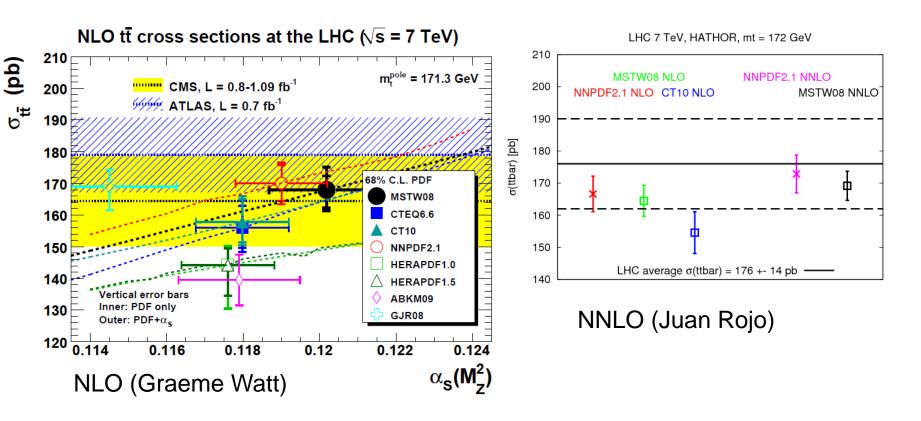



 $\sigma(t\bar{t})$ (pb)

Top pair cross section

- New paper by Cacciari, Czakon, Mangano, Mitov, Nason: http://arxiv.org/abs/1111.5869
 - New: <u>NNLL</u> soft gluon resummation
 - Central value similar to other approx. NNLO calculations
 - Somewhat increased scale unceratiny

Excellent agreement!


Exp. ~ Theor. Uncertainty!

σ_{tot} [pb]

PDF sensitivity

- Starting to become sensitive to PDF differences
- Similarly interesting for ttbar/Z ratio
 - PDF uncertainties anti-correlated

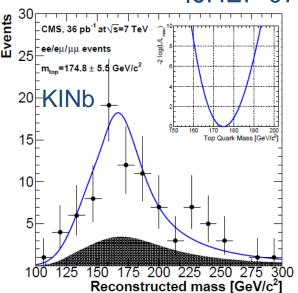
Outline

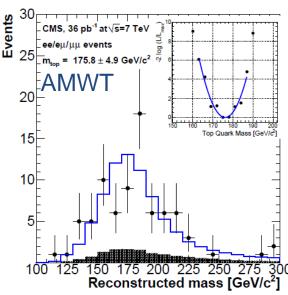
- Top pair cross section
- Top mass (difference)
- Single top cross section
- Top pair invariant mass distribution
- Charge asymmetry & same-sign tops

Top mass in Dileptons [JHEP 07 (2011) 049, L=36/pb]

- Event selection similar to cross section measurement
 - No b-tagging requirement, but b-likeness used in jet assignment
- 2 methods to deal with underconstrained system
 - Analytical Matrix Weighting Technique (AMWT)
 - Assign weight for each solution based on PDF, kinematics
 - For each event, take m(top) with highest sum of weights
 - Based on MWT method from D0: PRL 80 (1998) 2063

KINb Method


- Pz(tt) drawn from MC distribution
- Accept solution with lowest m(ttbar)
- Chose combination with largest number of solutions
- m(top) from Gaussian fit around peak of solutions
- Based on KIN method from CDF: PRD 73 (2006) 112006



Top mass in Dileptons

[JHEP 07 (2011) 049. L=36/pb]

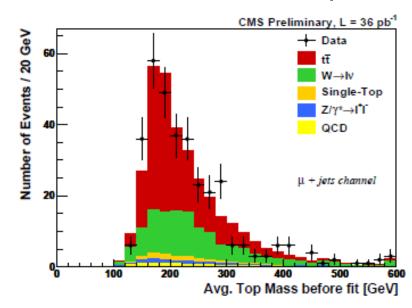
Max. likelihood fit to mass distributions

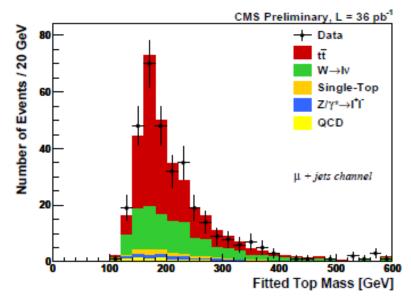
- Systematics dominated by JES, PU UE
- Two results are combined

Method	Measured m_{top} (in GeV/ c^2)
AMWT	$175.8 \pm 4.9 (\text{stat.}) \pm 4.5 (\text{syst.})$
KINb	$174.8 \pm 5.5 (\text{stat.})^{+4.5}_{-5.0} (\text{syst.})$
Combined	$175.5 \pm 4.6 (\text{stat.}) \pm 4.6 (\text{syst.})$

Source	KINb	AMWT
Overall jet energy scale	+3.1/-3.7	3.0
b-jet energy scale	+2.2/-2.5	2.5
Lepton energy scale	0.3	0.3
Underlying event	1.2	1.5
Pileup	0.9	1.1
Jet-parton matching	0.7	0.7
Factorisation scale	0.7	0.6
Fit calibration	0.5	0.1
MC generator	0.9	0.2
Parton density functions	0.4	0.6
b-tagging	0.3	0.5

First m(top) measurement at LHC Good agreement with world average

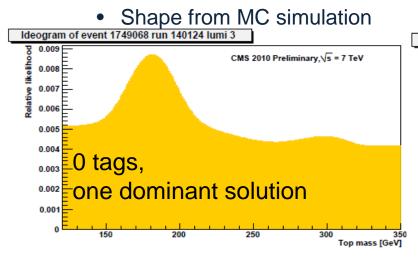


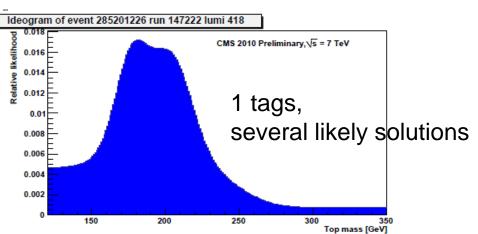

Top mass in lepton+jets (PAS TOP-10-009)

- Using the "Ideogram method" (DELPHI,D0,CDF)
- Event selection as for cross section analysis
 - signal fraction ~55% for >=4 jets
- Kinematic fit

20/01/2012

 Constrained fit requiring m(t)=m(tbar) applied to up to 24 jet combinations per event

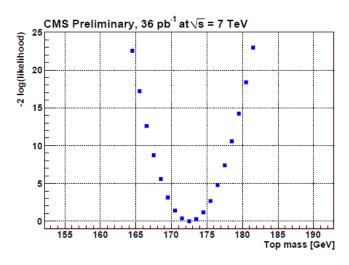



Top mass in lepton+jets (PAS TOP-10-009)

Event likelihood (== Ideogram)

$$\mathcal{L}_{event}\left(x|m_{\mathsf{t}},f_{\mathsf{t}\bar{\mathsf{t}}}\right) = f_{\mathsf{t}\bar{\mathsf{t}}}P_{\mathsf{t}\bar{\mathsf{t}}}\left(x|m_{\mathsf{t}}\right) + \left(1 - f_{\mathsf{t}\bar{\mathsf{t}}}\right)P_{\mathsf{bkg}}\left(x\right)$$

- x: observables (fitted mass & uncertainty, chi^2, N-btags)
- o Signal probability density $P_{t\bar{t}}(x|m_t) = P_{t\bar{t}}(n_{btag}) \cdot P_{t\bar{t}}(x_{mass}|m_t)$
 - Sum over permutations and indiv. Weights (correct perm.: analytical function; wrong perm: shape from MC)
 - · Consistency of b-tags folded in
- \circ Background probability density $P_{\text{bkg}}(x)$



28

Top mass in lepton+jets (PAS TOP-10-009)

 Construct sample likelihood and minimize

$$\mathcal{L}_{\text{sample}}\left(m_{\mathsf{t}}, f_{\mathsf{t}\bar{\mathsf{t}}}\right) = \Pi_{j} \mathcal{L}_{\text{event}, j}\left(m_{\mathsf{t}}, f_{\mathsf{t}\bar{\mathsf{t}}}\right)$$

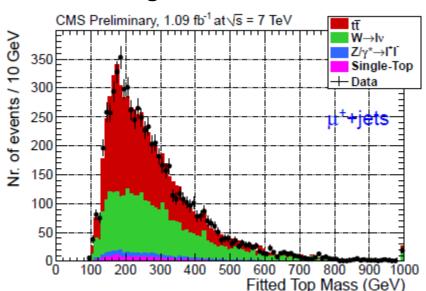
Central Result:

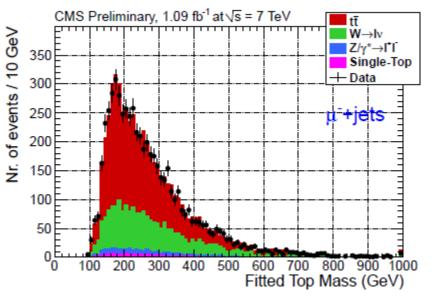
Dominated by jet energy scale

	Ideogram analysis
Source	$\delta m_{\rm t} ({\rm GeV})$
JES (overall data/MC)	+2.4-2.1
JES p_{T} and η dependence	-
light vs b-jet scale	-
JER (10% effect)	0.07
MET (10% effect)	0.4
Factorization scale	1.1
ME-PS matching threshold	0.4
ISR/FSR	0.2
Underlying event	0.2
Pile-up effect	0.1
PDF	0.1
Background	0.5
B-tagging	0.05
Fit calibration statistics	0.1
Total systematic uncertainty	+2.8- 2.5

 $m_{\rm t} = 173.1 \pm 2.1 ({\rm stat})^{+2.4}_{-2.1} ({\rm JES}) \pm 1.4 ({\rm other\ syst})\ {\rm GeV}$

Combination with dilepton channel measurement:


$$m_{\rm t} = 173.4 \pm 1.9({\rm stat}) \pm 2.7({\rm syst}) \ {\rm GeV}$$



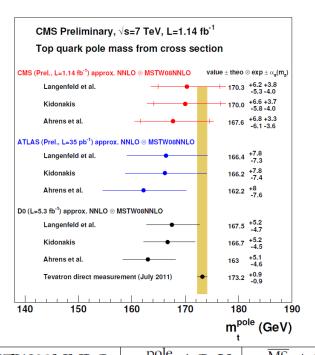
Top-antitop Mass Difference (PAS TOP-11-019, L=1.1/fb)

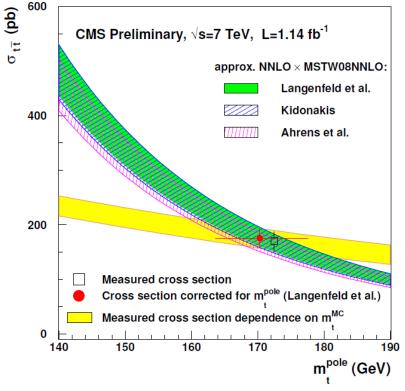
- Direct measurement of quarkantiquark mass difference
 - Test of CPT invariance
 - 2 sigma deviation reported by CDF
- Uses ideogram method

Source of systematic effect	Uncertainty on Δm_t (GeV)
Jet Energy Scale	0.16
Jet Energy Resolution	0.18
b vs \bar{b} Jet Response	0.10
Signal fraction	0.03
Background composition	0.13
Pileup	0.1
b-tagging efficiency	0.08
b vs \bar{b} tagging efficiency	0.17
Fit calibration statistics	0.3
Parton distribution functions	0.05
Total	0.47

$$\Delta m_t^{\rm measured} = -1.20 \pm 1.21 \text{ (stat)} \pm 0.47 \text{ (syst) GeV}$$

World's best measurement!



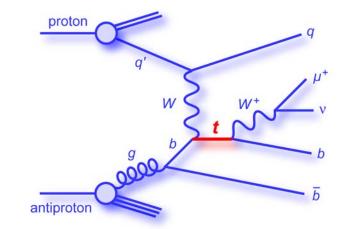

Determination of Top Mass from cross section (PAS TOP-11-008)

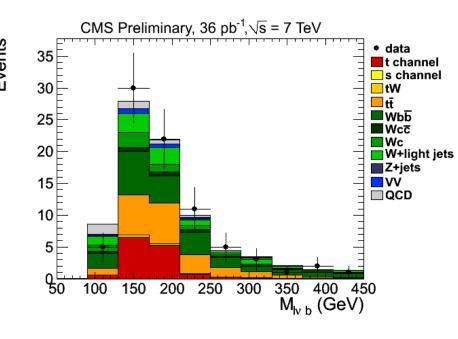
Using dilepton cross section (TOP-11-005) Exploit strong dependence of theory cross section on mtop

Important cross check to direct measurements

Can also determine MSbar mass:

Approx. NNLO × MSTW08NNLO	$m_t^{ m pole}$ / GeV	$m_t^{\overline{ ext{MS}}}$ / GeV
Langenfeld et al. [7]	$170.3^{+7.3}_{-6.7}$	$163.1^{+6.8}_{-6.1}$
Kidonakis [8]	$170.0^{+7.6}_{-7.1}$	_
Ahrens et al. [9]	$167.6^{+7.6}_{-7.1}$	$159.8^{+7.3}_{-6.8}$




Outline

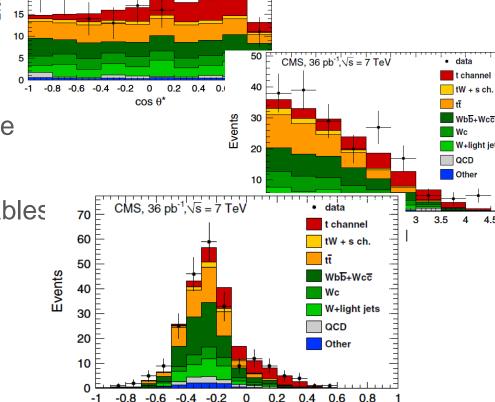
- Top pair cross section
- Top mass (difference)
- Single top cross section
- Top pair invariant mass distribution
- Charge asymmetry & same-sign tops

t-channel single top cross section [PRL 107 (2011) 091802, L=36/pb]

- Selection of single top events
 - 1 isolated electron (Pt>30 GeV) or muon (Pt>20 GeV)
 - 2 jets, Et>30 GeV, |eta|<5.0
 - One "tight" b-tag
 - One "loose" b-veto (2D ana)
 - transv. W mass > 40(50) GeV
- Reconstruct m(top) using W mass constraint
- Small S/B: 2 complementary methods:
 - o 2D analysis
 - Boosted Decision Tree analysis

t-channel single top cross section

[PRL 107 (2011) 091802, L=36/pb]


CMS, 36 pb⁻¹, $\sqrt{s} = 7 \text{ TeV}$

2D simultaneous fit

- Variables used :
 - angle between I and light jet
 - rapidity of light jet:
- W+light shape from data
- Minimum model dependence

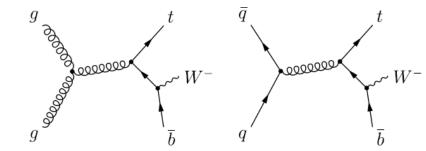
Boosted Decision Tree

- o 37 well modelled input variables
- Fit to BDT output
- Systematics included via nuisance parameters
- Maximum performance

$$\sigma = 83.6 \pm 29.8 (stat. + syst.) \pm 3.3 (lumi.)$$
pb

$$|V_{tb}| = \sqrt{\frac{\sigma^{exp}}{\sigma^{th}}} = 1.16 \pm 0.22(exp) \pm 0.02(th)$$

Single top tW Channel

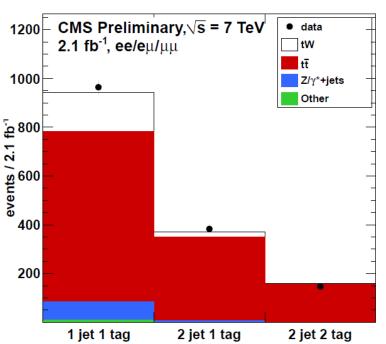

[PAS TOP-11-022, L=2.1/fb]


Problem of signal definition:

- NLO diagrams mix with top pair production
- Two approaches considered
 - Diagram removal (DR): remove doubly resonant contributions
 - Diagram subtraction (DS): subtract gauge invariant term which locally cancels tt contribution
- Difference as systematic (few %)

Event selection

- o 2 leptons (e or mu), ==1 b-jet
- Pt(I+I+jet,MET)<60 GeV
- o HT>160 GeV (emu only)



Single top tW Channel

[PAS TOP-11-022, L=2.1/fb]

 Cross section from simultaneous fit in signal (1 jet, 1 tag) and two sideband (2 jet 1 tag, 2 jet 2 tag) regions

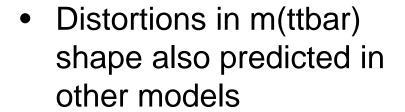
Systematic uncertainty $(ee/e\mu/\mu\mu)$ [%]	signal tW	tŧ	Z/γ*	other
Luminosity	4.5	4.5	-	4.5
Pile-up multiplicity	0.48/0.55/0.73	*	-	*
Trigger Efficiency	1.5	1.5	-	1.5
Muon reconstruction and identification	- /1/1	- /1/1	-	- /1/1
Electron reconstruction and identification	2/2/ -	2/2/ -	-	2/2/-
JES	$^{-2.5}_{+1.6}/^{-2.4}_{+0.1}/^{-0.6}_{+1.0}$	$\frac{-5.6}{+4.4} / \frac{-6.0}{+4.7} / \frac{-5.9}{+2.3}$	-	*
JER	1.1/0.5/0.4	3.1/3.9/4.4	-	*
B-tagging	$^{-9.5}_{+10}/^{-9.8}_{+9.8}/^{-9.5}_{+10}$	$^{-8.5}_{+10}/^{-11}_{+10}/^{-9.1}_{+11}$	-	*
Factorization/Normalization Scale (Q^2)	7.7/6/10	7.7/11/12	-	*
ME/PS matching thresholds	-	5.7/0.7/2.3	-	*
ISR/FSR	-	8.9/7.3/7.3	-	*
DR/DS scheme	8.2/9.1/6.6	-	-	*
E ^{miss} modeling	2.3/0.9/0.9	*	-	*
PDF uncertainties	4.5/4.5/4.5	*	-	*
Background Normalization	-	15/15/15	50/50/50	*
Simulation statistics	3.5/1.9/2.7	-	-	17/21/11

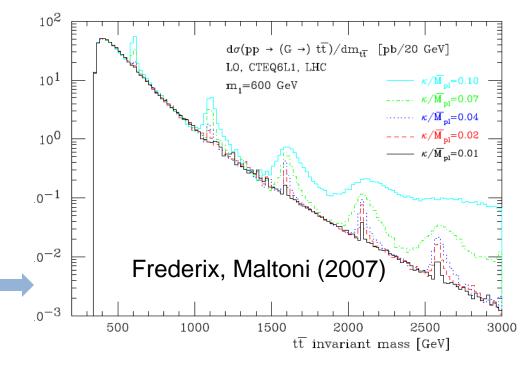
Systematics on top pair production reduced to ones affecting relative population of regions

Cross section measurement:

$$22^{+9}_{-7}$$
 (stat \oplus syst) pb

Obs. Significance 2.7sigma



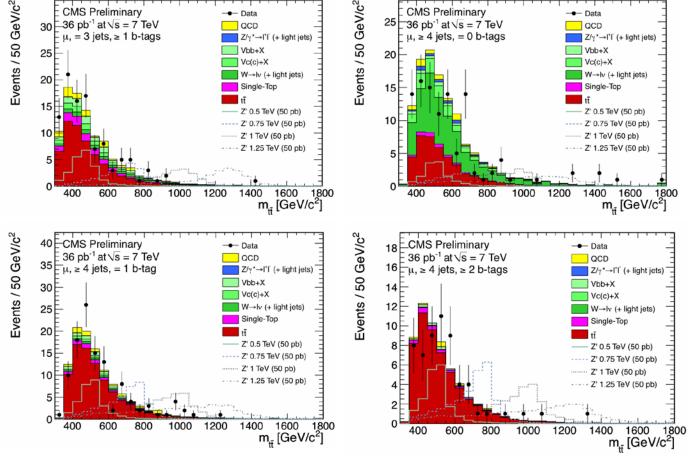

Outline

- Top pair cross section
- Top mass (difference)
- Single top cross section
- Top pair invariant mass distribution
- Charge asymmetry & same-sign tops

Top pair invariant mass

- Search for new particles decaying into top pairs
 - Spin 0 (e.g. MSSM Higgs)
 - Spin 1 (e.g. Technicolor, Topcolor Z' bosons)
 - Spin 2 (KK graviton) excitations)

Reconstruction:

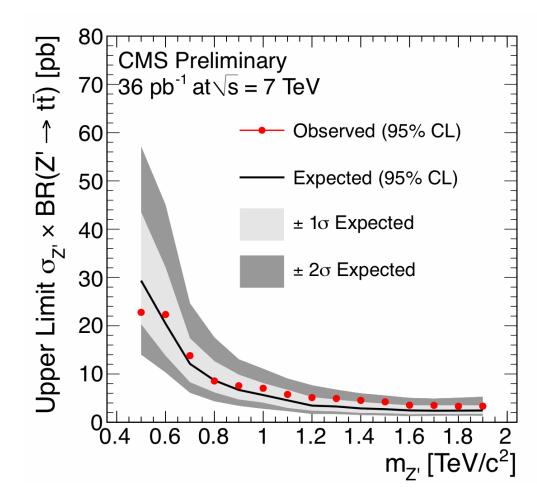

- Standard reconstruction at low mass
- At high mass jets, leptons close by (due to top quark boost) → "top tagging"

Top pair invariant mass: low mass analysis

[TOP-10-007, L=36/pb]

Here: mu+jets only

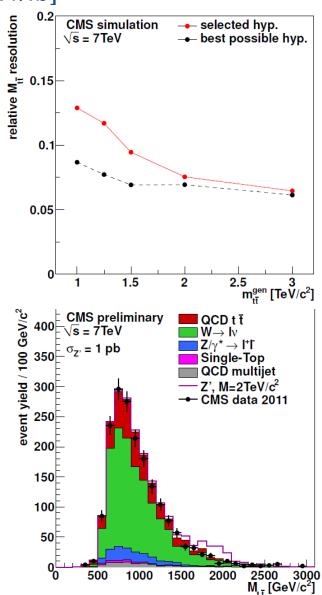
- Categorize events in N(jets), N(tags), e/mu
- Fit templates of SM backgrounds and narrow Z' signal
 - Systematics included as nuisance parameters modifying template shapes & normalizations



Top pair invariant mass: low mass analysis

[TOP-10-007, L=36/pb]

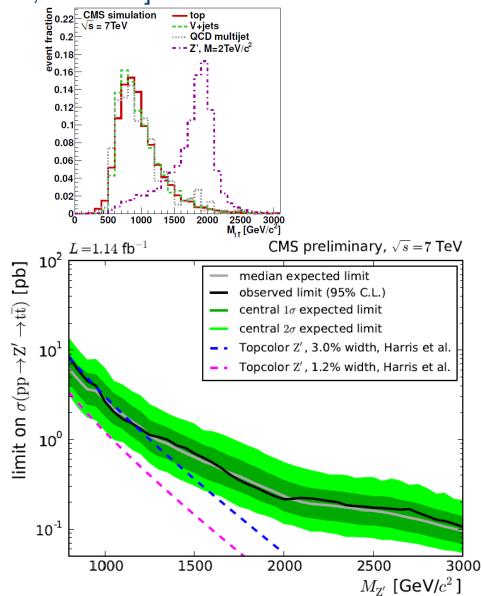
- Derive 95% CL upper limit
- Limit presented in (cross section x BR) of a narrow Z'
 - Not tied to a specific Z' model
- Exclusion possible for models predicting ~10pb for M(Z')~1 TeV


Even more interesting with 2011 data (in progress ...)

M(ttbar): High mass analysis in mu+jets

[EXO-11-055, L=1.1/fb]

- High mass: top decay products collimated
 - No lepton isolation, instead dR(mu,jet)>0.5 or Pt(rel)>25 GeV
 - Only >= 2 jets, Pt>250,50 GeV
 - HT(lep)>150 GeV
- M(ttbar) reconstruction using topological criteria
 - dR(top decay products) small
 - o dR(top, antitop) large
- QCD from data sideband

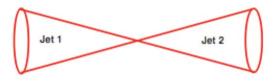


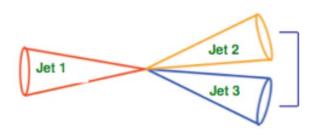
M(ttbar): High mass analysis in mu+jets

[EXO-11-055, L=1.1/fb]

Statistical analysis

- template shapes in HT(lep) and M(ttbar) for signal and backgrounds
- Systematics considered via nuisance parameters and shifted templates
- Obtain limit for narrow Z' (1% width)
- Exclude Topcolor Z' (Harris et al.) with 3% width
 - o 805<M<935 and 960<M<1060 GeV



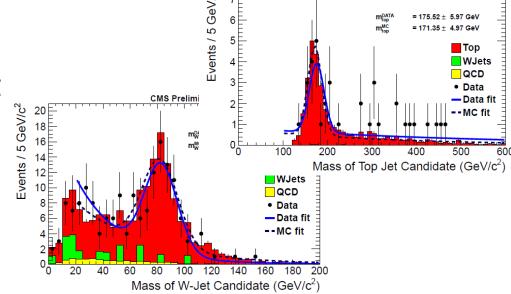

M(ttbar): High mass analysis in hadronic

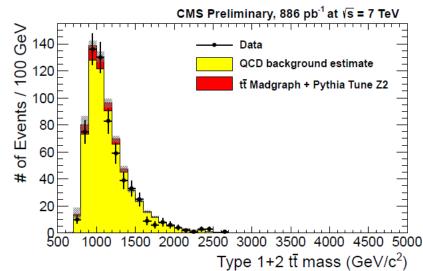
[EXO-11-006, L=0.9/fb]

- Two hemishpere types
 - Type-1: high boost, one "top jet"
 - Type-2: moderate boost, two jets (often one "W-jet" with 2 subjets, one extra jets)
- Analysis channels
 - Type 1+1

o Type 1+2

- Top tagging algorithm:
 - Cambridge-Aachen jets (R=0.8)
 - Find subjets using top tagging algorithm (Kaplan et al.; CMS JME-09-001)
 - N(subjets)>=3
 - 140<M(jet)<250 GeV
 - M(min)>50 GeV
- W tagging algorithm
 - o CA jets with R=0.8
 - Jet pruning algorithm (S. Ellis et al.)
 - N(subjets)>=2
 - 60<m(jet)<100 GeV

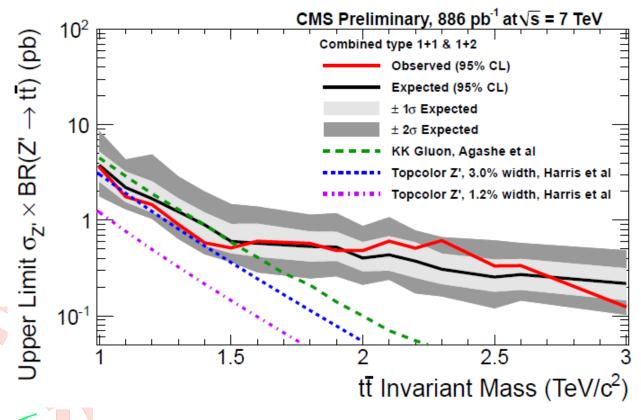



M(ttbar): High mass analysis in hadronic

[EXO-11-006, L=0.9/fb]

 Check of energy scale using semileptonic ttbar sample with boosted W jet

- intermediate mass search in type 1+2 (3 jets)
 - 1 top jet with Pt>350 GeV
 - 2 jets from jet pruning algo
 Pt>200/30 GeV
- high mass search in type 1+1 (2 jets)
 - o 2 top jets, Pt>350 GeV


M(ttbar): High mass analysis in hadronic

[EXO-11-006, L=0.9/fb]

Sub-pb limit for M>1.1TeV

KK-Gluon model excluded for 1.0<M<1.5 TeV

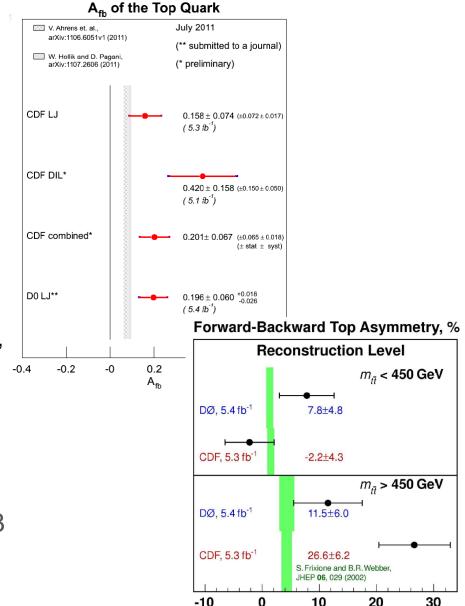
pt 47.8 GeV/c, b-tag discriminant 4.2

Golden 1+2 candidate, M=1.35 TeV

Top Tagging

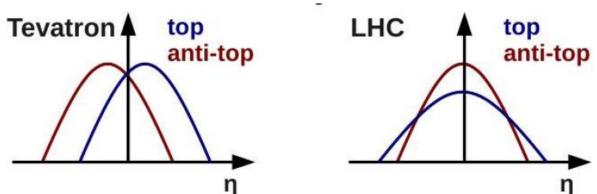
Outline

- Top pair cross section
- Top mass (difference)
- Single top cross section
- Top pair invariant mass distribution
- Charge asymmetry & same-sign tops


Forward-backward asymmetry at the Tevatron

 ttbar forward-backward asymmetry in ppbar collisions

$$\Delta y = y_t - y_{\bar{t}}$$


$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

- LO: no asymmetry in SM
- o NLO, small asymmetry
 - interference of diagrams that differ under charge conjugation (ISR-FSR, Born-Box)
- Measured asymmetry larger than predicted
 - o esp. at high M(ttbar) mass
 - e.g. CDF, PRD 83 (2011) 1120033 sigma effect for M>450 GeV!

Forward-backward asymmetry

- New particles produced via pp->X->ttbar could increase the measured asymmetry
 - Axigluons, new weak bosons, extra dimensions
- Models must accommodate measured cross section and M(ttbar) spectrum
- From Tevatron to LHC

- ח No forward-backward asymmetry due to symmetric initial state
- But: quarks have on average more momentum than anti-quarks
- Boost difference, resulting in small central-decentral asymmetry
 - Diluted due to ~85% gg initial states

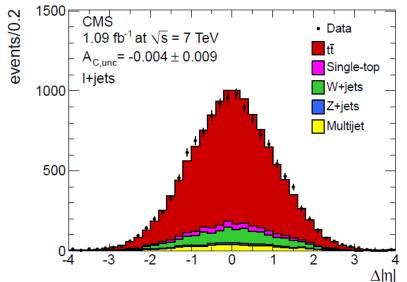
Charge Asymmetry

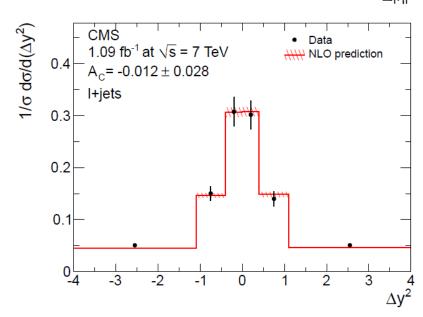
[arXiv:1112.5100, L=1.1/fb]

Variables used:

$$\Delta(|\eta|) = |\eta_{t}| - |\eta_{\bar{t}}|$$

$$\Delta(y^{2}) = (y_{t} - y_{\bar{t}}) \cdot (y_{t} + y_{\bar{t}})$$


• SM Prediction (G. Rodrigo)

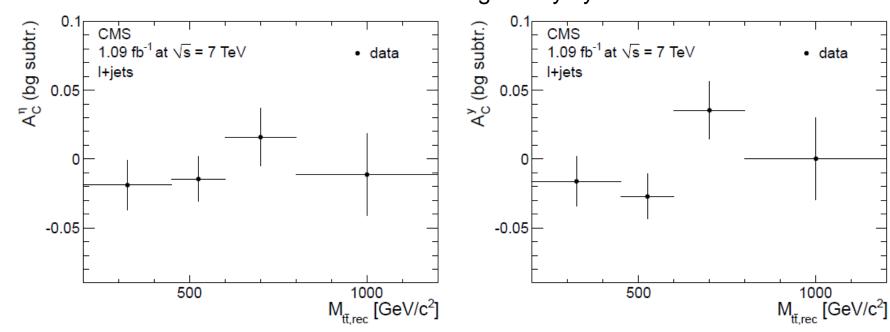

$$A_C^{\eta} = 0.013 \pm 0.001$$

 $A_C^{y} = 0.011 \pm 0.001$

• Z' with mass ~1TeV:

$$A_{c}-A_{c}^{SM}\sim -0.02, -0.03$$

 Regularized unfolding to extract true asymmetry

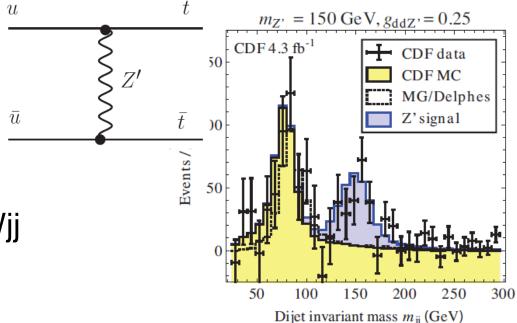

49

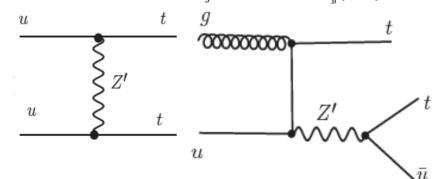
Charge Asymmetry

[arXiv:1112.5100, L=1.1/fb]

Asymmetry	A_C^{η}	A_C^y
Uncorrected	-0.004 ± 0.009 (stat.)	-0.004 ± 0.009 (stat.)
BG-subtracted	-0.009 ± 0.010 (stat.)	-0.007 ± 0.010 (stat.)
Final corrected	$-0.017 \pm 0.032 \text{ (stat.)} ^{+0.025}_{-0.036} \text{ (syst.)}$	$-0.013 \pm 0.028 \text{ (stat.)} ^{+0.029}_{-0.031} \text{ (syst.)}$
Theory predictions	0.0136 ± 0.0008	0.0115 ± 0.0006

Stat ~ syst uncertainties Need to reduce dominating theory systematics

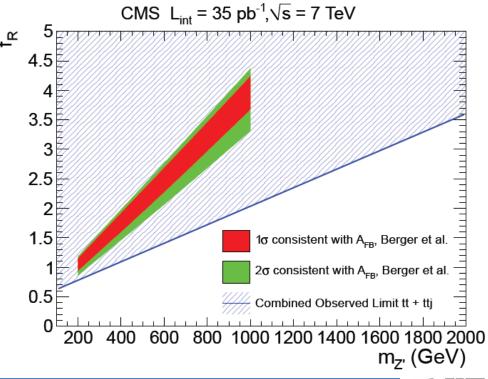

Raw asymmetry vs mass



50

Afb and same-sign Top Pairs

- FCNC in top sector could explain Afb at Tevatron
 - t-channel exchange of Z'
 coupling to u and t [S. Jung
 et al., ...]
- Could also explain CDF Wjj bump (which D0 does not see...)
 - [Buckley et al.; Jung et al.;Fox et al., Cheung et al., ...]
- Should manifest as samesign top pair production
 - o esp. viable at pp machine
- Search for same sign tops in CMS data
 - o Consider model of Berger et al. (arXiv:1101.5625)


Same-sign Top search

[JHEP 08 (2011) 005, L=36/pb]

- Event selection similar to std. dilepton top pair selection, but:
 - 2 positively charged leptons (search for pp->tt)
- Result with 35/pb of 2010 data:
 - o 2 events (SM: 0.9+/-0.6)
- Considered Model (Berger et al.):

$$\mathcal{L}=g_War{u}\gamma^\mu(f_LP_L+f_RP_R)tZ'_\mu+h.c.$$
 يد

- Turn into limit on pp->tt(j) vs f_r and M(Z')
- Exclude parameter space favoured by Tevatron Afb, xsection measurements!

Conclusions

- Top physics program at LHC / CMS is in full swing
- Many interesting results obtained already
 - o cross section, mass (difference), M(ttbar) resonances, charge asymmetry, single top production ...
- Many new results in the pipeline for Moriond
- With 4.7/fb on tape, most analyses are already limited by systematics
 - Main goal to improve understanding on experimental (e.g. JES, btag) and theoretical side (c.f. TOPLHCWG)
- Entering regime of precision / differential measurements
 - Surpassed Tevatron in N(tops) produced
 - starting to compete with CDF/D0 on m(top)
- So far no discrepancies from SM observed
 - But stay tuned (SUSY with light 3rd gen in the spotlight)

