Diffractive Dijet Production at HERA

Frank-Peter Schilling (University of Heidelberg)

representing the

collaboration

DIS 99, Zeuthen, 19-23/04/99

Contents:

- Physics Motivation
- Data Selection
- QCD Models
- Cross section measurement
- Results and discussion
- Conclusions

Physics Motivation

• Diffractive DIS at HERA $(F_2^{D(3)}(x_{I\!\!P},Q^2,\beta))$ has been successfully interpreted in terms of resolved IP model with diffractive parton densities which are gluon dominated and evolve with DGLAP:

$$F_2^{D(4)}(x_{I\!\!P},t,Q^2,\beta) = f_{I\!\!P}(x_{I\!\!P},t) * F_2^{I\!\!P}(\beta,Q2) + \text{subl.exch}.$$

- Gluon content of IP: 80-90%
- Diffractive dijet production: probe partonic structure of IP

- → Test universality of diffr. PDF's in different kin. regime
- ightarrow Large sensitivity to gluons through $\mathcal{O}(lpha_s)$ diagrams

Data Selection

- DIS $(Q^2 \gg 0 \; GeV^2)$: sc. e^- in bkwd. calo of main det.
- $\gamma p \ (Q^2 \approx 0 \ GeV^2)$: sc. e^- in low angle det.
- Diffractive events: Requirement of no hadronic activity in region $3.2 < \eta < 7.5$ in forward (proton) direction \rightarrow low M_Y , |t| and $x_{I\!\!P}$
- \bullet Dijet events: standard cone algorithm applied on X system, in lab (γp) or $\gamma^* I\!\!P\text{-CMS (DIS)}$

$$\mathcal{L}_{int} \approx 2 \ pb^{-1}$$
 $N_{\gamma p} \approx 400$ $N_{DIS} \approx 55$

QCD Models

- \bullet Hard diffr. scattering in γp : POMPYT 2.6 (direct and resolved γ , diffr. extension to PYTHIA)
- DIS diffr. hard scattering: RAPGAP 2.02
- Partonic structure of the IP: $d\sigma^D(ep \to epX) = f_{I\!\!P/p} \; d\sigma^{eI\!\!P \to eX}(\mu, x_\gamma, z_{I\!\!P})$
- Photoproduction: photon flux using EPA: $d\sigma^{eI\!\!P\to eX}(\mu,x_\gamma,z_{I\!\!P})=f_{\gamma/e}(y,Q^2)\ d\sigma^{\gamma I\!\!P\to X}(\mu,x_\gamma,z_{I\!\!P})$ Photon PDF: GRV LO
- $\begin{array}{l} \bullet \ \ \ \, \text{Pomeron flux factor:} \\ f_{I\!\!P/p}(x_{I\!\!P},t) = \left(\frac{1}{x_{I\!\!P}}\right)^{2\alpha_{I\!\!P}-1} e^{b_{I\!\!P}t} \\ \text{with} \\ \alpha_{I\!\!P}(t) = 1.20 + 0.26t \ \text{and} \ b_{I\!\!P} = 4.6 \ GeV^{-2} \end{array}$

• hard scattering via LO QCD matrix elements; dominant high P_T direct γ processes: BGF and QCDC

QCD Models II

 \bullet parton distributions for IP from QCD fits to $F_2^{D(3)}(H1)$ factorisation scale $\mu^2=P_T^2$

- sub-leading exchange (IR), Pion PDF and $\alpha_{I\!\!R}(t)=0.50+0.90t$ and $b_{I\!\!R}=2.0~GeV^{-2}$
- Also tested in DIS: Model of Bartels et al. for $q\overline{q}$ production through two-gluon exchange $\gamma^* p \rightarrow q\overline{q} + p$

Cross section Measurement

Cross section definition:

Photoproduction	DIS
$Q^2 < 0.01 \; GeV^2$	$Q^2 = 7.5 \dots 80 \; GeV^2$
0.25 < y < 0.7	0.1 < y < 0.7
$x_{I\!\!P} < 0.05$	$x_{I\!\!P} = 0.005 \dots 0.05$
$M_Y < 1.6 \; GeV^2$	$M_Y < 1.6 \; GeV^2$
$ t < 1 \ GeV^2$	$ t < 1 \ GeV^2$
$N_{Jets} = 2$	$N_{Jets} = 2$
$P_T^* > 5 \ GeV$	$P_T^* > 5 \ GeV$

Main systematic errors:

Error source	Syst. error
Hadronic calibration of detector	15 - 20%
components $(\gamma p$ and DIS $)$	
low angle e tagger acceptance	
and trigger efficiency (γp)	each 5%
E and $ heta$ of scattered e (DIS)	6% and $2%$
Model dependence: shape of P_T ,	6%, 3%,
$z_{I\!\!P}$, $x_{I\!\!P}$ and t distributions	1% and $3%$
migrations across $M_Y < 1.6 \; GeV$	6%
migrations across $x_{I\!\!P} < 0.05$	7%
modelling of hadronisation	3%

Jet rates and P_T spectra

 P_T^{Jet} relative to $\gamma^{(*)}$ axis in rest frame of X

- Sub-leading exchange contribution $\approx 15\%$
- Models in which IP consists only of quarks at starting scale undershoot data by factor of $\approx 5!$
- Models where IP is dominated by hard gluons give
- resonable description of data
- \rightarrow Jet rates sensitive to gluon content of IP !

Photoproduction and possible breaking of factorisation

- η_{lab}^{Jet} : decomposition in x_{γ} , $z_{I\!\!P}$
- $ullet \ x_{\gamma}^{Jets}$: direct and resolved components
- Gluon dominated IP models describe shape
- ullet resolved γ : soft interactions between remnant particles can destroy rapidity gaps
 - → breaking of factorisation ('survival probability')?
- Toy model $\langle S \rangle |_{x_{\gamma} < 0.8} = 0.6 \rightarrow \text{improved descr.}$
- Comparision with results from diffractive dijet production at TEVATRON: < S> = 0.1 at $\sqrt{s} = 1800~GeV$
- → Energy dependence of factorisation breaking effects?

Dependence on fractional momentum from IP

 γp DIS

- fractional momentum of IP which enters hard scattering
- reasonable description by gluon dominated IP
- In DIS: Bartels et al. calculation $(q\overline{q} \text{ prod. by } 2g \text{ exchange})$ contributes only at large $z_{I\!\!P}$; in kinematic regime of large M_X (low $z_{I\!\!P}$) other contributions important as well (eg. $q\overline{q}g$)
- ullet SCl model in DIS (LEPTO 6.5 with $R_{SCI} pprox 0.5$) gives similar description than peaked gluon model in RAPGAP
- → Momentum distribution neither soft nor 'super-hard'
- \rightarrow data favour $fit \ 2$ more than $fit \ 3$!

Conclusions

- \bullet First measurement of diffractive dijet production cross sections in γp and DIS from H1
- \bullet Comparision with resolved IP model with parton densities obtained from QCD fits to $F_2^{D(3)}(H1),$ evolving with a scale $\mu^2=P_T^2$
- Models where IP is dominated by hard gluons describe data;
 'flat g' (fit 2) better than 'peaked g' (fit 3)
- ullet γp data show direct and resolved components and possible presence of factorisation breaking effects for resolved γ
- Indication of energy dependence of factorisation breaking effects (compared with $p\overline{p}$ interactions at larger energies)
- ullet Bartels et al. 2g model of $q\overline{q}$ production not expected to describe DIS dijet production in high M_X , high P_T region; other contributions like $q\overline{q}g$ important as well
- ightarrow consistent picture from F_2^D , charged particles, event shapes and -flow and dijet production from H1:
- \rightarrow resolved IP model with gluon dominated parton densities evolving with scale of hard interaction
- ... but wait for talk about diffr. D^* production from H1!