Early Electroweak and Top Quark Physics with CMS

Frank-Peter Schilling

Karlsruhe Institute of Technology

University of Karlsruhe

DIS 07, Munich, April 2007

BMBF-Forschungsschwerpunkt
"Elementarteilchenphysik mit dem CMS-Experiment"

Physik an der TeV-Skala mit dem Large Hadron Collider

Compact Muon Solenoid

Introduction

- From Tevatron to LHC
 - □ W,Z,top cross sections much increased w.r.t. Tevatron
 - □ Large event samples already early
- Top and EW Physics at the LHC
 - Precision measurementso m_w, m_t, |V_{tb}| etc.
 - ☐ Sensitivity to new physics
 - ☐ Background to Higgs,BSM searches 🚖
- Use as commissioning tool:
 - ☐ W,Z: ECAL calibration;Tracker+muon alignment
 - ☐ <u>Ttbar:</u> jet energy scale, btagging
- All results presented here from CMS Physics TDR, Vol. 2 (2006)
 - http://cmsdoc.cern.ch/cms/cpt/tdr/
 - •Full GEANT-4 detector simulation
 - Systematic error evaluation

The CMS Detector

Commissioning on the surface: Magnet Test and Cosmic Challenge (MTCC) - Summer 2006

- **Experiment closed first time**
- Magnet commissioning and field mapping
- **Combined operation of full chain: Detector – Electronics – DAQ – Trigger** - Software
- Establish timing, calibration, operation procedures

Muon θ , Pt compared with MC

Now: Going Underground

Detector Performance

10⁻²

10

Physics TDR Vol. 1: Detector Performance

and Software (2006)

http://cmsdoc.cern.ch/cms/cpt/tdr/

- **Physics Objects reconstruction**
 - o Electrons, Photons, Muons, jets and missing ET, b- and tau-tagging
- **Calibration and Alignment Procedures**

perfect alignment

W[±]/Z⁰ Production

CMS Note 2006/082 CMS Note 2006/124

Luminosity	$10^{32} \text{ cm}^{-2} \text{s}^{-1}$		$2*10^{33} \text{ cm}^{-2} \text{s}^{-1}$		
Time	few weeks	6 months	1 day	few weeks	one year
Int. Luminosity	100 pb^{-1}	$1 \; {\rm fb^{-1}}$		$1 \; {\rm fb^{-1}}$	$10 \; {\rm fb^{-1}}$
$W^{\pm} \to \mu^{\pm} \nu$	700K	7M	100K	7M	70M
$Z^0 o \mu^+\mu^-$	100K	1M	20K	1M	10M

- Abundantly produced, clean leptonic signatures, σ(NLO) known to 4-5%
- Already for 1fb⁻¹, the measurement of W[±]/Z⁰'s is dom. by systematics:

$$\Delta \sigma / \sigma (pp \rightarrow Z + X \rightarrow \mu \mu + X) \approx (0.13(stat.) + 2.3(syst.) + 10(lumi.))\%$$

 $\Delta \sigma / \sigma (pp \rightarrow W + X \rightarrow \mu \nu + X) \approx (0.04(stat.) + 3.3(syst.) + 10(lumi.))\%$

- Luminosity measurement!
- If L known, constrain PDFs!

Large samples of e^{\pm} , μ^{\pm} to calibrate and commission detector and trigger!

mw Measurement

- Important SM parameter (m_H constraint)
- New methods using W/Z ratios and [§]/_₹ ¹⁰
 large Z⁰ statistics at LHC
 - ☐ "scaled observables"
 - o Giele, Keller PRD 57 (1998)
 - Treat Z as W, rescale according to mass ratio, use R(W/Z) from theory
 - ☐ "morphing"
 - o Kinematic transformation Z→ W

• Electron ch.

- Scaled pt (e channel): ∆m_W ~ 40 (15) (stat) + 40 (20) (syst) MeV @ 1 (10) fb⁻¹
- Theor. error dominated by $p_{\tau}(W)$: 30 MeV, to be improved with NNLO

Multiboson Production W±Z⁰, Z⁰Z⁰

- Probes triple gauge boson couplings (non-abelian gauge symmetry)
- Large LHC cross sections: σ(WZ)~50pb, σ(ZZ)~20pb
 □ Observable with early LHC data

CMS Note 2006/108

Sensitive to new physics

- WZ(e or μ): 97 events @ 1fb⁻¹ (5σ with 150 pb⁻¹!)
- ZZ (4e): 71 events @ 10 fb⁻¹

Large S/B: useful to contrain Higgs backgrounds!

Early Top Quark Physics

Tevatron: 10 ttbar / day (85% qq→tt)

• LHC: 1 ttbar / sec (87% gg→tt)

	1.96 TeV	<u> 14 TeV</u>	
ttbar pairs	5.06 ^{+0.13} _{-0.36} pb	833 ⁺⁵² ₋₃₉ pb	(x170)
Wjj (*)	~1200 pb	~7500 pb	(x6)
bb+other jets (*)	~2.4x10 ⁵ pb	~5x10⁵ pb	(x2)

(*) with kinematic cuts in order to better mimic signal Belyaev, Boos, and Dudko [hep-ph/9806332]

Single top (s-channel)	0.88±0.12 pb	10±1 pb	(x10)
Single top (t-channel)	1.98±0.22 pb	245±17 pb	(x120
Single top (Wt channel)	0.15±0.04 pb	60±10 pb	(x400

800k ttbar and 350k single-top produced in 1 fb⁻¹

tW-channel

Top Cross Section

- Due to high S/B after selection, cross section can be measured in a counting experiment
- Semi-leptonic channel
 - **Event Selection:**
 - o p_⊤(Lepton) > 20 GeV
 - o p_T(Jet) > 30 GeV stags > 1
 o Kinematic fit
 - $S/B \sim 27$
 - Eff. ~ 6.3%

120 L = 1 fb⁻¹ 100 80 60 40 20 300 35 m^{fit} (GeV) 150 200

	$\Delta \hat{\sigma}_{\mathrm{t}ar{\mathrm{t}}(\mu)}/\hat{\sigma}_{\mathrm{t}ar{\mathrm{t}}(\mu)}$
Statistical Uncertainty (1fb ⁻¹)	1.2%
Statistical Uncertainty (5fb ⁻¹)	0.6%
Statistical Uncertainty (10fb ⁻¹)	0.4%
Simulation samples $(\epsilon_{\rm sim})$	0.6%
Simulation samples (F _{sim})	0.2%
Pile-Up	3.2%
Underlying Event	0.8%
Jet Energy Scale (light quarks)	1.6%
Jet Energy Scale (heavy quarks)	1.6%
Radiation	2.6%
Fragmentation	1.0%
b-tagging (conservative)	7.0%
Parton Density Functions	3.4%
Background level	0.9%
Total Systematic Uncertainty	9.2%
Integrated luminosity (1fb ⁻¹)	10%
Integrated luminosity (5fb ⁻¹)	5%
Integrated luminosity (10fb^{-1})	3%
Total Uncertainty (1fb ⁻¹)	13.7%
Total Uncertainty $(5fb^{-1})$	10.5%
Total Officertainty (510)	
Total Uncertainty (10fb ⁻¹)	9.7%

CMS Note 2006/064

- $\Delta\sigma/\sigma$ ~ 1.2% (stat.) \pm 9.2% (syst.) \pm 10% (lumi) @ 1 fb⁻¹
- $\Delta \sigma / \sigma \sim 0.4\%$ (stat.) $\pm 9.2\%$ (syst.) $\pm 3\%$ (lumi) @ 10 fb-1

If b-tag unc. reduced to 2%, total error down to 7% (10 fb⁻¹) 2-3 GeV on m₊ from xs!

Top Cross Section (cont.)

- Dilepton channel:
 - □ Event Selection
 - o $P_T(Lepton) > 20 \text{ GeV}$
 - o 2 b-jets > 30 GeV
 - o MET > 40 GeV
 - o Kinematic fit
 - N=660 in 1 fb⁻¹

Effect	$\Delta \sigma_{t\bar{t}\ dil\ e/\mu}/\sigma_{t\bar{t}\ dil\ e/\mu}$
ISR and FSR	2.5%
Jet Energy Scale	3.6%
b-tag efficiency	3.8%
lepton reconstruction	1.6%
E_{T}	1.1%
Pile-Up	3.6%
Underlying Event	4.1%
heavy quark fragmentation	5.1%
PDF uncertainties	5.2%
Statistical uncertainty	0.9%
Integrated luminosity	3%

 $\Delta \sigma / \sigma \sim 0.9\%$ (stat.) \pm 11% (syst.) \pm 3% (lumi) @ 10 fb⁻¹

- Fully hadronic channel:
 - **□** Selection:
 - o Dedicated b-tag multijet trigger
 - o >5 Jets, E_T>30 GeV
 - o Topology
 - o 2 b-tags
 - N=8000 events in 1 fb⁻¹
 - □ S/B improvement with Neural Net event selection

 $\Delta \sigma / \sigma \sim 3\%$ (stat.) $\pm 20\%$ (syst.) $\pm 3\%$ (lumi) @ 10 fb⁻¹

CMS Note 2006/077

Top Mass Measurement

- m_t fundamental SM param.
- Related to m_h
- Semileptonic channel:
 - ☐ A simple gaussian fit is compared with more sophisticated "ideogram method", also employing kinematic constraints

- ☐ Clear gain in precision when using the fitted ideogram
- ☐ 1 GeV uncertainty reachable with good detector understanding (JES 1.5%, btag 2% etc.)

80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	sstant 77.43 %8.20	7000- 6000- 5000- 4000- 2000- 1000- 120 140 160	
	G I Fu	Standard Selection	•
	Gaussian Fit	Gaussian Ideogram	Full Scan Ideogram
	Δm_t	Δm_t	Δm_t
D.1. 77. (-1/)	(GeV/c^2)	(GeV/c^2)	(GeV/c^2)
Pile-Up (5%)	0.32	0.23	0.21
Underlying Event	0.50	0.35	0.25
Jet Energy Scale (1.5%)	2.90	1.05	0.96
Radiation (Λ_{QCD}, Q_0^2)	0.80	0.27	0.22
Fragmentation (Lund b, σ_q)	0.40	0.40	0.30
b-tagging (2%)	0.80	0.20	0.18
Background	0.30	0.25	0.25
Parton Density Functions	0.12	0.10	0.08
Total Systematical uncertainty	3.21	1.27	1.13
Statistical Uncertainty (10 fb ⁻¹)	0.32	0.36	0.21
Total Uncertainty	3.23	1.32	1.15

 $\Delta m_t = 0.21 \text{ (stat.)} \pm 1.13 \text{ (syst.)} \text{ GeV @ 10 fb}^{-1}$

CMS Note 2006/066

Top Mass Measurement (cont.)

- Dilepton channel
 - ☐ Experimental error dominated by jet energy scale, known to
 - o 15% at 1 fb⁻¹:

∆m ~ 4.2 GeV

- o 10...3.0% for 1...10 fb⁻¹ Δ m ~ 2.9 GeV
- o 1.5% longer term: $\Delta m \sim 1.0 \text{ GeV}$

 $\Delta m_{\rm t}$ = 1.5 (0.5) (stat.) \pm 2.9 (1.1) (syst.) GeV @ 1 (10) fb⁻¹

 Fully hadronic channel
 Jet pairing likelihood improves S/B from 1/9 to 1/3 at same efficiency

Most likely m

Legend

Signal

Zjets

Diboson

ttbar non dilepton

100 120 140 160 180 200 220 240 260 280 top mass [GeV/c²]

	_
	$\Delta m_t [~{ m GeV}/c^2]$
Pile Up	0.4
Underlying Event	0.6
PDF	1.4
IS/FS Radiation	2.3
Fragmentation	0.9
Jet Energy Scale	2.3
b-Tagging	0.3
Background	2.0

CMS Note 2006/077

 $\Delta m_{\rm t}$ = 0.6 (stat.) \pm 4.2 (syst.) GeV @ 1 fb⁻¹

N.B. mass measurement also studied in t \rightarrow I + J/ Ψ +X decays, see CMS Note 2006/058

Top as commissioning tool

- Light quark jet energy scale from m_W constraint in W→ jj in ttbar
 - □ Adapt jet energy scale until correct m_w is fitted
 - No btag in start-up scenario
 - □ Result:
 - o ΔE_{iet} (stat.) ~ 1% (for 1 fb⁻¹)
 - o ΔE_{iet} (syst.) ~ 3% (pileup)

CMS Note 2006/025

- B-tagging efficiency determination in ttbar events
 - ☐ Selection of high-purity dilepton ttbar events
 - □ Purity of b-content in selected sample: 44% \pm 1.6% (stat.) \pm 1.9% (syst.)
 - ☐ Rel. uncertainty on btag eff.
 - o 1 fb⁻¹: 6%
 - o 10 fb⁻¹: 4%

CMS Note 2006/013

Single Top Production

- Sensitive to new physics
- Measurement of |V_{tb}|

$$R = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

- NLO Cross section ~370 pb
 - **□** 3.7M events in 10 fb⁻¹
- t-channel results for 10 fb⁻¹:
 - ☐ Optimized event selection (S/N~1.34)
 - o MET > 40 GeV
 - o Light jet $p_T>40$ GeV, $|\eta|>2.5$
 - o B-jet $p_T>35$ GeV, $|\eta|<2.5$
 - o Topological cuts

$$N_{evt} = 2400$$

$$\Delta\sigma/\sigma$$
 = 2.7 (stat.) \pm 8.1 (syst.) \pm 3 (lumi) %

- Other channels:
 - □ s-channel

$$\Delta\sigma/\sigma$$
 = 18 (stat.) \pm 31 (syst.) \pm 3 (lumi) %

□ tW-channel

$$\Delta\sigma/\sigma$$
 = 7.4 (stat.) \pm 18 (syst.) \pm 3 (lumi) %

CMS Note 2006/084

CMS Note 2006/086

Conclusions

- Exciting prospects already for 1 fb⁻¹ of LHC data
 - ☐ Electroweak: Large samples of W,Z events in early phase
 - o Calibration and monitoring
 - o Luminosity / PDF measurements
 - o Combined W-mass measurement with ∆m_w ~ 50 MeV
 - o Measurements of W+Jets, Z+Jets, Diboson production
 - □ Top Quarks
 - o First cross section and mass measurements in all decay channels
 - o Use for calibration (JES) and commissioning (btag)
- Promising precision measurements
 - \square W-mass: $\triangle m_w \sim 15$ MeV feasible when combining channels
 - □ Top-mass: $\Delta m_t < 1$ GeV (with combination of J/ Ψ channel)
 - □ Single top cross sections

Many more results to be found in PTDR I+II and ~150 accompanying (public) CMS Notes!

The CMS Detector will be ready to face these challenges when LHC turns on!

Backup

Drell-Yan Muon Pairs

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} M_{ll} \mathrm{d} y} [pp \to l_1 l_2 + X] \approx \sum_{ij} \left(f_{i/p}(x_1) f_{j/p}(x_2) + (i \leftrightarrow j) \right) \hat{\sigma}$$

- s-channel γ*/Z⁰ exchange
- Sensitivity to PDFs
- Measurement of A_{FB} at high luminosity
- High mass region sensitive to new physics
 - Cross section calculated for 11 samples with M_{inv} > 0.2 ... 5 TeV

With 1fb⁻¹,
 XS can be measured up to
 M~1 TeV

Jet Energy Scale Uncertainty

Ideogram method

event-by-event likelihood approach

- probability or ideogram of an event $P(y|m_t) \sim \exp\left(-\frac{1}{2} \cdot \chi^2(y|m_t)\right) \text{ with }$ $\chi^2(y|m_t) = \left(\frac{m_t m_t^{fit}}{\sigma_{m_t}^{fit}}\right)^2$
- convolution with th. expected probability density $P(m_t|M_t)$ $\mathcal{L}_i(M_t) = \int P(y|m_t) \cdot P(m_t|M_t) dm_t$

 $P(m_t|M_t)$ includes Breit-Wigner shape of signal, combinatorial and process background; with M_t as the true value of the top mass

 maximum likelihood method on combination of all convoluted ideograms

