

Top Quark Physics with CMS

Frank-Peter Schilling
Karlsruhe Institute of Technology (KIT)

Joint EP/PP/LPCC Seminar CERN, 14 June 2011

Outline

- Motivation & Introduction
- Physics Objects for Top
- MC Simulation
- Measurements performed so far:
 - Top pair cross section
 - Top mass, incl. lepton+jets channel [NEW]
 - Single top cross section
 - Top pair invariant mass & search for new physics
 - Charge Asymmetry
 - Search for same-sign top pairs [NEW]
- All CMS public results available from
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Why is Top Physics interesting?

- Heaviest SM particle
 - o m(top)=173+/-1.1GeV (0.6%)
- Special role in EWK symmetry breaking?
- Sensitive to Higgs mass through EWK loop corrections
 - Low Higgs mass peferred

- New physics may couple preferentially to top
 - e.g. search for new particles decaying into top (pairs) → M(ttbar)
- The top quark may be special
 - New physics may be hidden in e.g. spin structure
- Top production may be background to SUSY and other NP

Top quark pair production

Gluon fusion (dominant at LHC)

Quark-antiquark annihilation

- Total cross section at 7 TeV:
 - o NLO (MCFM) $\sigma_{t\bar{t}}^{\rm NLO} = 158^{+23}_{-24} \; {\rm pb}$
 - o approx. NNLO
 - Kidonakis, PRD 82 (2010) 114030 $\sigma_{t\bar{t}} = 163^{+11}_{-10} \; \mathrm{pb}$
 - Langenfeld, Moch, Uwer, PRD80 (2009) 054009;
 - Aliev et al., CPC182 (2011) 1034 $\sigma_{t\bar{t}} = 164^{+10}_{-13} \; \mathrm{pb}$

	LHC	Tevatron
gg	~85%	~10%
qq	~15%	~90%

Top quark decays

- Top decays before it can hadronize
 - almost exclusively t->Wb

Top pair event classification according to W decays

Branching

ratio:

~5%

~30%

~46%

Backgrounds: few

(mainly Z+jets)

moderate (mainly W+jets)

huge (mainly QCD)

Single Top Production

Single top quarks are produced through electroweak interaction

Kidonakis, NLO+NNLL

t-channel: PRD 83 (2011) 091503 s-channel: PRD 81 (2010) 054028 tW-channel: PRD 82 (2010) 054018

Difficult signature (fewer jets)
Large backgrounds from ttbar, V+jets
tW-channel interferes with ttbar at higher orders

LHC Top Physics Program

Production

- Pair cross section (QCD)
- Single top cross section (EWK)
- Differential cross sections
 - Compare with theory
 - Validate ME+PS models
- Charge asymmetry
- Spin correlations

Decay

- Branching ratios
- \circ t->Wb / t->Wq
- W-helicity in top decays (W->tb coupling)

Intrinsic Properties

- Mass (difference)
- o Charge
- o Lifetime

New physics

- New particles decaying to top
- BSM top decays
- New physics with top-like signature

Physics Objects for Top Physics

- Electrons and muons (in future also taus)
 - Identification with high efficiency & low fake rate
 - Precise momentum measurement
 - Isolation (identify leptons from W-decays, suppress QCD)
 - Key for triggering top events
- Jets
 - Precise measurement with small jet energy scale uncertainty
- Missing transverse energy (MET)
 - Reconstruct transverse neutrino momentum
 - Reject QCD, Z+jets background
- b-jet identification
 - High efficiency (and low failure rate) to tag jets from b-quarks
 - Helps with jet pairing (e.g. for top mass)

Top physics needs ~all physics objects well understood!

Electrons and Muons

- Muon Pt resolution for Top 1-2% (tracker dominated)
- Good trigger and ID capabilities using redundant subdetectors

- Excellent ECAL resolution (~1% for TOP)
- Good track matching (fit accounting for Bremsstrahlung)
- ID based on shower shape, H/E, etc.

14/06/2011

Jets and Missing Transverse Energy

- Particle Flow ("PF", calo&tracking&muons combined)
- Jets defined using anti-kT algo (dR=0.5)
- Jet energy scale uncertainty <3% for 30<Pt<200 GeV
- Jet Pt resolution 10-15%
- MET resolution vastly improved with PF

b-jet Identification

- Crucial ingredient: excellent tracker performance and alignment
- So far mostly use
 - Count tracks with large IP
 - Secondary vertex reconstruction

- Data-driven efficiency & mistag rate determination
- SF(Data/MC) close to unity
 - known to ~15-20% for b-eff
 - known to ~10% for mistag rate

MC Simulation and Theory Uncertainties

- Use MADGRAPH to simulate top signal and most important backgrounds (W/Z+jets)
 - Matrix elements with up to 3 (tt) or 4 (W/Z) extra jets
 - ME+PS matching using MLM prescription
 - o Scales set as $Q^2 = M_{t,W,Z}^2 + \sum P_{T,jets}^2$
 - Cross sections rescaled to inclusive (N)NLO values
- Dedicated samples to estimate modelling uncertainties, varying
 - o scale Q by factors 2.0 and 0.5
 - amount of ISR/FSR radiation
 - matching thresholds by factors 2.0 and 0.5
 - MC@NLO as alternate signal generator
- Use data-driven backgrounds where possible

Outline

- Top pair cross section
- Top pass measurement
- Top pair invariant mass distribution
- Single top cross section
- Charge asymmetry
- Search for same-sign top pairs

Dilepton channel: Event selection

- Inclusive single lepton triggers
 - muons (Pt>...15 GeV) and electrons (Pt>...22 GeV)
- Two isolated, opposite charge leptons (ee,mumu,emu)
 - Pt>20 GeV, |eta|<2.4(mu),2.5(e)
 - Good ID, conversion rejection for electrons, eff. 99(90)% for mu(e)
 - Rel. isolation < 0.15

$$\text{Rel.isol.} = \frac{\displaystyle \sum_{R < 0.3} p_T^{\text{track}} + \sum_{R < 0.3} p_T^{\text{ECAL}} + \sum_{R < 0.3} p_T^{\text{HCAL}} }{p_T(\text{lepton})}$$

- Z-boson veto (ee,mumu)
 - |M(II)-M(Z)|>15 GeV
- Missing Et (MET)
 - MET>30 (20)GeV in II (II')

- Jets
 - o Pt>30 GeV, |eta|<2.5
- b-jet identification
 - Track-counting algorithm
 - Here: eff ~80%, mistag rate 10%

Jet multiplicity before applying b-tagging

Hatched: BG uncertainty

Very pure sample of top events!

- Counting experiment, done in three categories (and each for ee,mumu,emu)
 - 2 jets, >=0 b-tags
 - 2 jets, >=1 b-tags (adds sensitivity for ee,mumu)
 - 1 jet, >=0 b-tags (improves combined result)
- Important backgrounds from data
 - Drell-Yan (after Z-veto)
 - N(in veto,data) *R(out/in,MC)
 - Events with non-W/Z leptons (mainly QCD,W+jets)
 - "fakes" measured in QCD sample.

Final state	e ⁺ e ⁻	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$		
At least two jets, no b-tagging requirement					
Events in data	23	28	60		
Simulated backgrounds	1.4 ± 0.3	1.5 ± 0.3	5.2 ± 1.2		
$\mathrm{Z}/\gamma^\star ightarrow \mathrm{e^+e^-}/\mu^+\mu^-$	3.0 ± 1.8	7.4 ± 4.1	_		
Non-W/Z	1.1 ± 1.4	0.6 ± 1.1	1.4 ± 1.6		
All backgrounds	5.5 ± 2.3	9.5 ± 4.3	6.7 ± 2.0		
Total acceptance A (%)	0.259 ± 0.021	0.324 ± 0.025	0.928 ± 0.057		
Cross section (pb)	$189 \pm 52 \pm 29$	$159 \pm 45 \pm 39$	$160\pm23\pm12$		
At le	east two jets, at le	ast one b-jet			
Events in data	15	24	51		
Simulated backgrounds	0.7 ± 0.2	0.8 ± 0.3	2.5 ± 0.7		
$\mathrm{Z}/\gamma^\star ightarrow \mathrm{e^+e^-}/\mu^+\mu^-$	0.7 ± 0.7	2.6 ± 1.8	_		
Non-W/Z	0.9 ± 1.2	0.3 ± 0.8	0.5 ± 1.1		
All backgrounds	2.3 ± 1.4	3.8 ± 2.0	3.0 ± 1.4		
Total acceptance \mathcal{A} (%)	0.236 ± 0.022	0.303 ± 0.028	0.857 ± 0.068		
Cross section (pb)	$150\pm46\pm22$	$186\pm45\pm25$	$156\pm23\pm13$		
One jet, no b-tagging requirement					
Events in data	8	10	18		
Simulated backgrounds	1.6 ± 0.4	1.9 ± 0.4	3.6 ± 0.9		
$Z/\gamma^{\star} \rightarrow e^{+}e^{-}/\mu^{+}\mu^{-}$	0.2 ± 0.3	5.2 ± 4.3	_		
Non-W/Z	0.3 ± 0.5	0.1 ± 0.4	1.3 ± 1.3		
All backgrounds	2.1 ± 0.7	7.1 ± 4.3	4.9 ± 1.5		
Total acceptance A (%)	0.058 ± 0.007	0.074 ± 0.008	0.183 ± 0.024		
Cross section (pb)	$282 \pm 135 \pm 45$	$107 \pm 119 \pm 163$	$200 \pm 65 \pm 35$		

Dominating systematics

- Data-driven background estimates
- Jet energy scale
- b-tagging efficiency

In-situ determination of b-tagging efficiency

o b-tagging eff. related to ratio of >=2 tag / >=1 tag events $R_{2/1}$

$$R_{2/1}^{\text{sim}} = (57.9 \pm 0.1)\%$$

$$R_{2/1}^{\text{data}} = (60.8 \pm 7.5)\%$$

- Good agreement observed
 - 5% uncertainty assigned to MC eff.

Combined cross section (14% rel. uncertainty)

$$\sigma(pp \rightarrow t\bar{t}) = 168 \pm 18 \, (stat.) \pm 14 \, (syst.) \pm 7 \, (lumi.) \, pb$$

Cross section ratio tt/Z

Here and elsewhere: Luminosity error: 4%

- Interesting quantity:
 - No luminosity uncertainty
 - anti-correlated PDF uncertainty in Z and tt
- o Result:

$$\frac{\sigma(pp \to t\bar{t})}{\sigma(pp \to Z/\gamma^\star \to e^+e^-/\mu^+\mu^-)} = 0.175 \pm 0.018 \, (stat.) \pm 0.015 \, (syst.)$$

- 13% uncertainty, comparable to uncertainty of SM prediction
- Only marginally better than cross section uncertainty (dominating systematics do not cancel; luminosity error only 4%)

18

Lepton+jets: Event selection

- Considered modes:
 - o e+jets, mu+jets
- Single lepton triggers used
- Exactly one isolated lepton
 - Muons: Pt>20 GeV,|eta|<2.1
 - Rel. Isolation < 0.05
 - Electrons: Pt>30 GeV, |eta|<2.5
 - Rel. Isolation, conversion veto
- Jets
 - Pt>30 GeV, |eta|<2.4

- Analysis without b-tagging
 - Use MET shape as discriminating distribution
- Analysis with b-tagging
 - MET>20GeV
 - SV tagging algorithm

Top pair cross section in I+jets without b-tagging (arXiv:1106.0902)

Event counts vs jet multiplicity

20

Top pair cross section in I+jets without b-tagging (arXiv:1106.0902)

 Method: simultaneous template fit in two distributions to extract N(ttbar)

- separates mainly backgrounds without true MET (QCD,Z+jets) from events with MET (top, W+jets)
- o M3: N(jets)>=4
 - Mass of three jets maximising vectorially summed Pt
 - Separate top from backgrounds
- Templates from MC, except QCD (control regions from data)

Top pair cross section in I+jets without b-tagging (arXiv:1106.0902)

Cross section extraction:

	$oldsymbol{eta}_{tar{t}}$	$N_{t\bar{t}}$	$N_{\text{single-top}}$	N_{W+jets}	N_{Z+jets}	N _{QCD} e+jets	$N_{QCD} \mu$ +jets
predicted	1.00	733 ± 116	72 ± 4	1069 ± 77	138 ± 10	367 ± 27	58 ± 4
fitted	$1.10^{+0.25}_{-0.21}$	806^{+183}_{-154}	76 ± 22	1475 ± 86	184 ± 51	440 ± 44	113 ± 31

MC scaled to fit result (muons, >=4 jets)

Systematics

e+jets
$$\sigma_{t\bar{t}} = 180^{+45}_{-38}(\text{stat.} + \text{syst.}) \pm 7(\text{lumi.}) \, \text{pb.}$$
 mu+jets $\sigma_{t\bar{t}} = 168^{+42}_{-35}(\text{stat.} + \text{syst.}) \pm 7(\text{lumi.}) \, \text{pb.}$ combined $\sigma_{t\bar{t}} = 173^{+39}_{-32}(\text{stat} + \text{syst.}) \pm 7(\text{lumi.}) \, \text{pb.}$

	combined result	
	stat.+syst.	syst.
	uncertainty	only
Stat. uncertainty	+8.7% -8.4%	_
JES	+20.3% -17.6%	+18.3% -15.5%
Factorization scale	+11.2% -10.6%	+7.1% -6.5%
Matching threshold	+10.5% -9.8%	+5.9% -5.0%
Pileup	+9.3% -9.3%	+3.3% -4.0%
ID/reconstruction	+9.2% -8.7%	+3.0% -2.3%
QCD rate & shape	+9.1% -8.9%	+2.7% -2.9%
ISR/FSR variation	+9.0% -8.6%	+2.3% -1.8%
JER	+8.8% -8.4%	+1.3% -0.0%
PDF uncertainty	+8.7% -8.5%	+0.0% -1.3%
Total	+23.5% -19.3%	$+21.8\% \\ -17.4\%$

Top pair cross section in I+jets with b-tagging (TOP-10-003)

- Use events with >=1 b-tag
 - Secondary vertex (SV) algorithm
- Template fit of SV mass in 2D N(jets), N(tags) plane
 - Separation of signal and various backgrounds
- Most important systematics fitted in situ (nuisance parameters in profile likelihood)
 - Jet energy scale
 - B-tag efficiency
 - o W+jets ren./fac. scale

23

Top pair cross section in I+jets with b-tagging (TOP-10-003)

 Fit result: SV mass distributions in 5(4) 1(2)-tag bins per channel (e+jets, mu+jets)

Top pair cross section in I+jets with b-tagging (TOP-10-003)

Obtained result for BG normalizations:

BG scale factor	Fit result
W+b scale factor (w.r.t. MC sc. to incl. NNLO)	1.9 +0.6-0.5
W+c-jets scale factor (w.r.t. MC sc. to incl. NNLO)	1.4 +/- 0.2

JES/ b-tag SF consistent with input, but uncertainty reduced!

Source	Uncertainty (%)		
Systematic uncertainties			
Lepton ID/reco/trigger	3		
Unclustered $E_{\rm T}^{\rm miss}$ resolution	< 1		
$t\bar{t}$ + Jets Q^2 -scale	2		
ISR/FSR	2		
ME to PS matching	2		
PDF	3.4		
Profile likelihood parameters			
Jet energy scale and resolution	7.0		
b tag efficiency	7.5		
W+Jets Q ² -scale	9.1		
Combined	11.6		

Systematic uncertainties extracted in the fit

Result:

$$\sigma_{t\bar{t}} = 150 \pm 9 \text{ (stat.)} \pm 17 \text{ (syst.)} \pm 6 \text{ (lumi.) pb}$$

Total uncertainty 13%

Cross check analyses

- Soft muon tagging in mu+jets
 - Orthogonal method to identify b-jets
 - Suffers from reduced efficiency
- Counting experiment in e+jets
 - Use Berends scaling to estimate W+jets background
- Neural network analysis in mu+jets
 - Variables: dR(jet1,jet2), eta(muon), b-tag
- All in good agreement!

Jet multiplicity for events with >=1 soft muon tag

NN discriminant

26

Cross section combination

Precision of CMS combination 12%

Very good agreement with theory Already more precise than NLO!

PDF sensitivity

- Starting to become sensitive to PDF differences
- Similarly interesting for ttbar/Z ratio
 - PDF uncertainties anti-correlated

Outline

- Top pair cross section
- Top pass measurement
- Top pair invariant mass distribution
- Single top cross section
- Charge asymmetry
- Search for same-sign top pairs

Top mass in Dileptons (arXiv:1105.5661)

- Event selection similar to cross section measurement
 - No b-tagging requirement, but b-likeness used in jet assignment
- 2 methods to deal with underconstrained system
 - Analytical Matrix Weighting Technique (AMWT)
 - Assign weight for each solution based on PDF, kinematics
 - For each event, take m(top) with highest sum of weights

KINb Method

- Pz(tt) drawn from MC distribution
- Accept solution with lowest m(ttbar)
- Chose combination with largest number of solutions
- m(top) from Gaussian fit around peak of solutions
- Based on KIN method from CDF: PRD 73 (2006) 112006

Top mass in Dileptons (arXiv:1105.5661)

Mass extraction

- maximum likelihood fit of mass distributions to templates for signal and background
- Methods linear in m(top) and unbiased after calibration

Top mass in Dileptons (arXiv:1105.5661)

Systematic uncertainties

 Dominated by jet energy scale, pile-up and UE

Source	KINb	AMWT
Overall jet energy scale	+3.1/-3.7	3.0
b-jet energy scale	+2.2/-2.5	2.5
Lepton energy scale	0.3	0.3
Underlying event	1.2	1.5
Pileup	0.9	1.1
Jet-parton matching	0.7	0.7
Factorisation scale	0.7	0.6
Fit calibration	0.5	0.1
MC generator	0.9	0.2
Parton density functions	0.4	0.6
b-tagging	0.3	0.5

Two results are combined

Correlations taken into account

Method	Measured m_{top} (in GeV/ c^2)
AMWT	$175.8 \pm 4.9 (\text{stat.}) \pm 4.5 (\text{syst.})$
KINb	$174.8 \pm 5.5 (\text{stat.})^{+4.5}_{-5.0} (\text{syst.})$
Combined	$175.5 \pm 4.6 (\mathrm{stat.}) \pm 4.6 (\mathrm{syst.})$

First m(top) measurement at LHC Good agreement with world average 173.3+/-1.1GeV Precision not much worse than TEV dilepton

NEWI

- Using the "Ideogram method" (DELPHI,D0,CDF)
- Event selection as for cross section analysis
 - signal fraction ~55% for >=4 jets
- Kinematic fit
 - Constrained fit requiring
 m(t)=m(tbar) applied to up to
 24 jet combinations per event

Event likelihood (== Ideogram)

$$\mathcal{L}_{event}\left(x|m_{\mathsf{t}},f_{\mathsf{t}\bar{\mathsf{t}}}\right) = f_{\mathsf{t}\bar{\mathsf{t}}}P_{\mathsf{t}\bar{\mathsf{t}}}\left(x|m_{\mathsf{t}}\right) + \left(1 - f_{\mathsf{t}\bar{\mathsf{t}}}\right)P_{\mathsf{bkg}}\left(x\right)$$

- o x: observables (fitted mass & uncertainty, chi^2, N-btags)
- o Signal probability density $P_{t\bar{t}}(x|m_t) = P_{t\bar{t}}(n_{btag}) \cdot P_{t\bar{t}}(x_{mass}|m_t)$
 - Sum over permutations and indiv. Weights (correct perm.: analytical function; wrong perm: shape from MC)
 - Consistency of b-tags folded in
- \circ Background probability density $P_{\text{bkg}}(x)$

 Construct sample likelihood and minimize

$$\mathcal{L}_{\text{sample}}\left(m_{\mathsf{t}}, f_{\mathsf{t}\bar{\mathsf{t}}}\right) = \Pi_{j} \mathcal{L}_{\text{event},j}\left(m_{\mathsf{t}}, f_{\mathsf{t}\bar{\mathsf{t}}}\right)$$

Systematics

Dominated by jet energy scale

	Ideogram analysis
Source	$\delta m_{t} (\mathrm{GeV})$
JES (overall data/MC)	+2.4-2.1
JES p_{T} and η dependence	-
light vs b-jet scale	-
JER (10% effect)	0.07
MET (10% effect)	0.4
Factorization scale	1.1
ME-PS matching threshold	0.4
ISR/FSR	0.2
Underlying event	0.2
Pile-up effect	0.1
PDF	0.1
Background	0.5
B-tagging	0.05
Fit calibration statistics	0.1
Total systematic uncertainty	+2.8- 2.5

1.12

1.08 1.06

1.04

1.02

0.98

CMS Preliminary 36 pb⁻¹ at √s = 7 TeV

160

- Cross check: simultaneous measurement of m(top) and JES
 - Template method in 2-tag sample
 - using M3 and M2 (mass of untagged jets)
- Central result:

$$m_{\rm t} = 173.1 \pm 2.1 ({\rm stat})^{+2.4}_{-2.1} ({\rm JES}) \pm 1.4 ({\rm other\ syst})\ {\rm GeV}$$

- Factor two more precise than ATLAS!
- Combined measurement with dileptons

ATLAS result in I+jets: 169.3 +/- 4.0 +/- 4.9 GeV World average: 173.3 +/- 1.1 GeV

165

170

JES = 1.048 ± 0.040 m, = 167.8 ± 7.1 GeV

Correlation = -0.678

175

180

m_t [GeV]

$$m_{\rm t} = 173.4 \pm 1.9 {\rm (stat)} \pm 2.7 {\rm (syst)} {\rm GeV}$$

Outline

- Top pair cross section
- Top pass measurement
- Top pair invariant mass distribution
- Single top cross section
- Charge asymmetry
- Search for same-sign top pairs

Top pair invariant mass (TOP-10-007)

- Search for new particles decaying into top pairs
 - o Spin 0 (e.g. MSSM Higgs)
 - Spin 1 (e.g. Technicolor, Topcolor Z' bosons)
 - Spin 2 (KK graviton excitations)

Reconstruction:

- Standard reconstruction at low mass
- At high mass jets, leptons close by (due to top quark boost) → "top tagging"

Top pair invariant mass (TOP-10-007)

Here: mu+jets only

- Categorize events in N(jets), N(tags), e/mu
- Fit templates of SM backgrounds and narrow Z' signal
 - Systematics included as nuisance parameters modifying template shapes & normalizations

Top pair invariant mass (TOP-10-007)

- Derive 95% CL upper limit
- Limit presented in (cross section x BR) of a narrow Z'
 - Not tied to a specific Z' model
- Exclusion possible for models predicting ~10pb for M(Z')~1 TeV

Even more interesting with 2011 data Working on dedicated high-mass analyses ("top tagging") ...

Outline

- Top pair cross section
- Top pass measurement
- Top pair invariant mass distribution
- Single top cross section
- Charge asymmetry
- Search for same-sign top pairs

t-channel single top cross section (TOP-10-008)

- Selection of single top events
 - 1 isolated electron (Pt>30 GeV) or muon (Pt>20 GeV)
 - 2 jets, Et>30 GeV, |eta|<5.0
 - One "tight" b-tag
 - One "loose" b-veto (2D ana)
 - transv. W mass > 40(50) GeV
- Reconstruct m(top) using W mass constraint
- Small S/B: 2 complementary methods:
 - o 2D analysis
 - Boosted Decision Tree analysis

- 2D analysis
 - Simultaneous fit to 2 discriminating variables
 - Angle between I and light jet:
 - exploiting almost 100% left handed polarization of top quark
 - Rapidity of light jet:
 - Recoil jet
 - W+light shape from data
 - Robust against BG composition
- Minimum model dependence

43

Events

- Boosted Decision Tree (BDT) Analysis
 - o 37 well modeled input variables
 - Object kinematics & correlations, W & t properties, angular distributions, global event variables
 - Cross section from fit to BDT output
 - Systematics included via nuisance parameters
- Maximum sensitivity

14/06/2011

Observed (expected) sensitivity:

-2D ana: 3.7 (2.1) sigma

-BDT ana: 3.5 (2.9) sigma

Measurement of CKM matrix element Vtb:

$$|V_{tb}| = \sqrt{\frac{\sigma^{exp}}{\sigma^{th}}} = 1.16 \pm 0.22(exp) \pm 0.02(th)$$

[CDF+D0: 0.88+/-0.07]

For
$$0 \leq |V_{tb}|^2 \leq 1$$
 (flat prior in $|V_{tb}|^2$):

$$|V_{tb}| > 0.69$$
 @95% CL (BDT analysis)

 $\sigma = 83.6 \pm 29.8(stat. + syst.) \pm 3.3(lumi.) \text{ pb}$

First single top cross section measurement in pp collisions First measurement without use of MVA 33% precision with just 2010 data

Outline

- Top pair cross section
- Top pass measurement
- Top pair invariant mass distribution
- Single top cross section
- Charge asymmetry
- Search for same-sign top pairs

Forward-backward asymmetry

 ttbar forward-backward asymmetry in ppbar collisions

$$\Delta y = y_t - y_{\bar{t}}$$

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

- LO: no asymmetry in SM
- o NLO, small asymmetry
 - interference of diagrams that differ under charge conjugation
- Measured asymmetry larger than predicted
 - o esp. at high M(ttbar) mass
 - e.g. CDF, arXiv:1101.0034: 3 sigma effect for M>450 GeV!

Forward-backward asymmetry

- New particles produced via pp->X->ttbar could increase the measured asymmetry
 - Axigluons, new weak bosons, extra dimensions
- Models must accommodate measured cross section and M(ttbar) spectrum
- From Tevatron to LHC

- No forward-backward asymmetry due to symmetric initial state
- But: quarks have on average more momentum than anti-quarks
- Boost difference, resulting in small central-decentral asymmetry
 - Diluted due to ~85% gg initial states

Charge Asymmetry (TOP-10-010)

- Variable used $|\eta_t| |\eta_{\bar{t}}|$ $A_C = \frac{N^+ N^-}{N^+ + N^-}$
 - N+(-) is number of events
 where it is positive (negative)
- SM Prediction (G. Rodrigo)
 A_c=0.0130(11)
- Tevatron measurement
 A_c=0.04 to 0.05
- Z' with mass ~1TeV:
 A_C-A_CSM~-0.02, -0.03

Initial measurement of Ac performed in lepton+jets events

Charge Asymmetry (TOP-10-010)

Raw asymmetry

 $A_c^{rec} = 0.018 \pm 0.034 (stat)$

Unfolded asymmetry

source of systematic	positive shift in A_C	negative shift in A_C
jet energy scale	0.017	-
jet energy resolution	0.007	-0.006
Q^2 scale	0.003	-0.007
ISR/FSR	0.005	-0.0006
matching threshold	0.004	-0.006
PDF	0.004	-0.011
b tagging	0.007	-
lepton efficiency	0.017	-0.018
QCD model	0.005	-0.005
overall	±0	.026

$$A_C = 0.060 \pm 0.134 (\text{stat.}) \pm 0.026 (\text{syst.})$$

Expect same sensitivity as Tevatron with ~1/fb Will also do Ac vs M(ttbar)

Outline

- Top pair cross section
- Top pass measurement
- Top pair invariant mass distribution
- Single top cross section
- Charge asymmetry
- Search for same-sign top pairs

Afb and same-sign Top Pairs

- FCNC in top sector could explain Afb at Tevatron
 - t-channel exchange of Z'
 coupling to u and t [S. Jung
 et al., ...]
- Could also explain CDF Wjj bump (which D0 does not see...)
 - [Buckley et al.; Jung et al.;Fox et al., Cheung et al., ...]
- Should manifest as samesign top pair production
 - o esp. viable at pp machine
- Search for same sign tops in CMS data
 - Consider model of Berger et al. (arXiv:1101.5625)

Same-sign Top search

- Event selection similar to std. dilepton top pair selection,but:
 - 2 positively charged leptons (search for pp->tt)
- Result with 35/pb of 2010 data:
 - o 2 events (SM: 0.9+/-0.6)
- Considered Model (Berger et al.):

$$\mathcal{L} = g_W \bar{u} \gamma^\mu (f_L P_L + f_R P_R) t Z'_\mu + h.c.$$
 يد

- Turn into limit on pp->tt(j) vs f_r and M(Z')
- Exclude parameter space favoured by Tevatron Afb, xsection measurements!

Summary

- First CMS Top physics results using 2010 data
- Already in the first year of data taking, we have:
 - Measured top pair production cross section to 12%
 - Measured t-channel Single Top cross section to 36%
 - Measured top mass to 3.3 GeV (2%)
 - Excluded a narrow Z' for M=1TeV, X.S.*BR=10pb
 - Made an intial measurement of the charge asymmetry
 - Excluded large parameter space for like-sign top pairs
- Impressive list which shows that
 - CMS detector is very well prepared for top physics, and for discoveries!

Outlook

- Several results already limited by systematics
- Challenges for 2011 analyses:
 - reduce impact of Jet energy scale & b-tag.eff. (in situ!)
 - Large number of pile-up events
 - Triggering top events getting ever more challenging

- Many new results for summer conferences in the pipeline
 - Hadronic & tau channels
 - More differential measurements
 - Top properties
 - Focus on new physics in Top sector

BACKUP

Dilepton cross section systematics

	$N_{\rm jet} = 1$		$N_{ m jet} \geq 2$	
Source	$e^{+}e^{-} + \mu^{+}\mu^{-}$	$\mathrm{e}^{\pm}\mu^{\mp}$	$e^{+}e^{-} + \mu^{+}\mu^{-}$	$\mathrm{e}^{\pm}\mu^{\mp}$
Lepton selection	1.9/1.3	1.1	1.9/1.3	1.1
Lepton selection model	4.0	4.0	4.0	4.0
Hadronic energy scale	-3.0	-5.5	3.8	2.8
Pileup	-2.0	-2.0	0.8	0.8
b tagging (≥ 1 b tag)			5.0	5.0
Branching ratio	1.7	1.7	1.7	1.7
Decay model	2.0	2.0	2.0	2.0
Event Q ² scale	8.2	10	-2.3	-1.7
Top quark mass	-2.9	-1.0	2.6	1.5
Jet and $E_{\rm T}$ model	-3.0	-1.0	3.2	0.4
Shower model	1.0	3.3	-0.7	-0.7
Subtotal without b tagging	11.2/11.1	13.1	8.0/7.9	6.2
Subtotal with b tagging			9.5/9.4	8.0
Luminosity	4.0	4.0	4.0	4.0

59

Lepton+Jets top mass

CMS Preliminary, 36 pb⁻¹ at \sqrt{s} = 7 TeV 0.06 fraction of Pseudo Experiments / 25 MeV CMS 2010 Preliminary, lepton+jets 0.05 Full Ideogram 0.04 Single solution + no fit 0.03 + MET and 1 btag cross-check analysis 0.02 0.01 fitted statistical uncertainty [GeV]

Top mass combination

	Dileptons	Lepton+jets	Correlation	Combination
			factor	
Measured m _t	175.5	173.1		173.4
Statistical Uncertainty	4.6	2.1	0	1.9
Breakdown of Systematic Uncertainty:				
Jet energy scale (correlated part)	2.25	2.25	1	2.3
Jet energy scale (uncorrelated part)	3.28	n/a	0	0.4
Jet energy resolution	0.5	0.1	1	0.1
Lepton energy scale	0.3	n/a	0	0.0
Missing p_T scale	0.1	0.4	1	0.4
Pile-up	1.0	0.1	1	0.2
b-tagging	0.4	0.1	1	0.1
Background	0.1	0.5	0	0.4
Parton density function	0.5	0.1	1	0.2
MC generator	0.4	n/a	0	0.0
Underlying event	1.4	0.2	1	0.3
ISR/FSR	0.2	0.2	1	0.2
Jet-parton scale	0.7	0.4	1	0.4
Factorization scale	0.6	1.1	1	1.0
Fit calibration and MC statistics	0.3	0.1	0	0.1
Total Systematic Uncertainty	4.6	2.7		2.7
Combination weight	12%	88%		

Single Top Systematics

		impact on				
uncertainty	correlation	2D +		BDT		
				- +		
statistical only	60	52		39		
shared shape/rate uncertainties:						
ISR/FSR for tt	100	-1.0	+1.5	< 0.2	< 0.2	
Q^2 for $t\bar{t}$	100	+3.5	-3.5	+0.3	-0.4	
Q ² for V+jets	100	+5.7	-12.0	+2.6	-4.5	
Jet energy scale	100	-8.8	+3.6	-5.1	+1.2	
b tagging efficiency	100	-19.6	+19.8	-15.2	+14.6	
MET (uncl. energy)	100	-5.7	+3.7	-3.9	-0.5	
shared rate-only uncertainties:						
$t\bar{t}$ (±14%)	100	+2.0	-1.9	+0.5	-0.6	
single top s ($\pm 30\%$)	100	-0.4	+0.5	-0.4	+0.4	
single top tW ($\pm 30\%$)	100	+1.1	-1.0	< 0.2	< 0.2	
$Wb\bar{b}$, $Wc\bar{c}$ ($\pm 50\%$)	100	-3.0	+2.9	+1.7	-1.9	
$Wc \left(^{+100\%}_{-50\%} \right)$	100	-3.0	+6.1	-2.4	+4.4	
Z+jets (±30%)	100	-0.6	+0.7	+0.4	-0.2	
electron QCD (BDT: ±100%, 2D: +130%)	50	+2.9	-3.7	-1.7	+1.7	
muon QCD (BDT: ±50%, 2D: ±50%)	50	< 0.2	< 0.2	-2.1	+2.1	
signal model	100	-5.0	+5.0	-4.0	+4.0	
BDT-only uncertainties:						
electron efficiency (±5%)	0	_	_	-1.4	+1.4	
muon efficiency (±5%)	0	_	_	-3.6	+3.5	
V+jets (±50%)	0	_	_	-1.5	< 0.2	
2D-only uncertainties:						
muon W+light (±30%)	0	-1.4	+1.4	_	_	
electron W+light (±20%)	0	-0.6	+0.7	_	_	
W+light model uncertainties	0	-5.4	+5.4	_	_	

