Prospects of measuring

 $B_s \rightarrow \mu^+ \mu^-$ with CMS

Frank-Peter Schilling (CERN/PH)

For the CMS Collaboration

Assisi (Perugia), Italy 20th-24th June 2005

Contents

- Physics Motivation
- Brief recap of D0 / CDF results
- Introduction to the CMS Tracker
- Offline analysis of B_s→ μ⁺ μ⁻
- Online selection: Experimental Aspects
 - Muon trigger rates at L1 and HLT
 - Tracking at the High Level Trigger
 - CMS Alignment strategy
- High level trigger selection of $B_s \rightarrow \mu^+ \mu^-$
- Conclusions

B physics at CMS

- B production at the LHC:
 - Peak Luminosity: 2x10³³ ... 10³⁴ cm⁻²s⁻¹
 - b cross section: $\sigma(bbar) \sim 500 \mu b$
 - O(10⁵...10⁶) b pairs/sec
 - But: High level trigger output <100Hz!
 - Trigger highly challenging!
- B-Physics program:
 - Rare decays
 - CP Violation
 - •B⁰_s mixing
- This talk: focus on rare decay $B^0_s \rightarrow \mu^+ \mu^-$

$B_s \rightarrow \mu^+ \mu^-$: The Physics Case

- B_s^0 highly suppressed in SM: $B=(3.42\pm0.54)*10^{-9}*$
 - Forbidden at tree level, Effective FCNC
 - Internal quark annihilation, Helicity suppression
 - In SM, only through higher order loop diagrams
 - ⇒ highly sensitive probe for new physics!

- Sensitivity to BSM parameters
 - tanβ in MSSM and various other models

*) A.J. Buras, PLB566,115

Standard Model Expectation for B⁰_s→μ⁺μ⁻ and B⁰_d→ μ⁺μ⁻

- In SM, B⁰_d→ μ⁺μ⁻ suppressed wrt B⁰_s→μ⁺μ⁻
 - Suppression (|V_{td}|/|V_{ts}|)²
 - No B_s at B factories
- Helicity suppression favours $B_{s(d)} \rightarrow \tau^+\tau^-$
 - Very challenging mode
- All decay channels beyond current reach of presently running experiments:

Mode	$B_s^0 \to \mu^+ \mu^-$	$B_d^0 \to \mu^+ \mu^-$	$B_d^0 \rightarrow e^+e^-$	$B_d^0 \to e^{\pm} \mu^{\mp}$	Reference
SM Expect.	3.5×10^{-9}	1.0×10^{-10}	2.4×10^{-15}	~ 0	PRD68, 111101
CLEO	-	6.1	8.3	15	PRD62, 091102
BELLE	-	1.6	1.9	1.7	PRD68, 111101
CDF	5.8	1.5	-	-	PRL 93 , 032001
D0	4.1	-	-	-	PRL 94 , 071802
BABAR	-	0.61	0.83	1.8	PRL 94 , 221803

(All experimental results in units of 10^{-7})

CDF Result (best limit so far)

CDF Collaboration, PRL93(2004)032001

NEW Update: CDF-Note 7670 (L=364pb⁻¹)

- Mass resolution σ=25 MeV
- closest candidate, M=5.190 GeV

$$B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) < 1.5 \times 10-7$$

 $B(B_{d}^{0} \rightarrow \mu^{+}\mu^{-}) < 3.8 \times 10-8$

D0 Result

- D0 Collaboration, PRL94(2005)071802, L=240 pb⁻¹
- NEW: Update Moriond 2005, D0Note-4733-Conf, L=300 pb⁻¹

- Mass resolution σ=90 MeV
- 4 Candidate events
- 4.3±1.2 background

$$B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) < 3.0*10^{-7}$$

BSM Expectations

- Significant (~10⁴) enhancement possible in SM extensions
 - Potentially interesting even for first LHC data
- In Minimal Supersymmetric Extension of SM
 - $B(B_s \rightarrow \mu^+ \mu^-) \sim (\tan \beta)^6$
 - With minimal flavour violation (CKM only): observation of $B_s \to \mu^- \mu^+$ yields upper bound on heaviest mass in MSSM Higgs sector
- MSSM with modified minimal flavour violation at large tan β:
 - − Increase *B* by *10⁴ also for $B_d \rightarrow \mu^+ \mu^-$
- M-Sugra at large tanβ: B~O(10⁻⁷) in regions of parameter space consistent with g-2 and CDM
- R-Parity violating SUSY (tree-level sneutrino)
- Possible constraints on
 - tan β, Heaviest mass of (extended) Higgs sector

Introduction to the CMS Tracker

The Pixel detector

- Active area ~1m²
- 3 barrel layers r~4,7,10cm
- 2 endcap disks: r=6...15cm
- 40*10⁶ channels
- Px size: 100 μm (rφ)x150 μm (z)
- Hit Resolution 10μ in rφ

The silicon strip tracker

Strip sensors

- 10cm length
- 80..200 µm pitch
- 512 or 768 strips

Tracker Performance

Using muons with 1,10,100 GeV:

Efficiency

Pt resolution

Efficiency >98% for η<2.4

Pt resolution 2...3% for η<1.75

B_s→μ⁺μ⁻: Offline analysis

- Full simulation and reconstruction of signal and dominant background (gluon splitting)
- Kinematic selection:

Pt^μ > 4.3 GeV
$$|η^{μ}|$$
<2.4
0.4 < $ΔR_{μμ}$ < 1.2 Pt^{μμ}>12 GeV

- Estimated event numbers for 10fb⁻¹ (1 year @ L=10³³ cm⁻²s⁻¹) (without HLT inefficiency)
 - Signal: N_{signal}=66
 - Dominant background from g→bb splitting: N_{bkad}~3*10⁷
- Most important ingredients for analysis:
 - Good invariant mass resolution
 - Muon Isolation in tracker and calorimeter
 - Precise secondary vertex reconstruction

Dimuon mass window

- 80 MeV mass window around M(B_s)=5.369 GeV
- Background rejection ~1.1%

Secondary Vertex Selection

Cuts on variables provided by SVX reconstruction algorithm

- $m2d < 50\mu m$ (min transv. dist. between 2μ)
- $m2d/\sigma(m2d) < 2$
- d > 820μm (transv. vertex dist.)
- σ_{II} < $80\mu m$ (svx err in transv. plane)
- $cos(\alpha) > 0.9997$ (2d pointing angle)

Background rejection < 2.3*10⁻⁴ / Signal efficiency ~30%

Isolation in tracker and calorimeter

Tracker isolation

No charged track

Pt>0.9 GeV

In $\Delta R = 0.5^* \Delta R_{\mu\mu} + 0.4$

Calorimeter Isolation

(EM+HAD, same ΔR):

Et < 4GeV (low lumi)

Et < 6GeV (high lumi)

- ε (signal)~0.45 (0.3)
- Bkg. rej. ~0.013 (0.009)

Rate estimates

Efficiencies and event numbers for 10 (100) fb⁻¹:

	Signal	Background
number of events after trigger and kinematics selections	66	2.9×10^{7}
tracker isolation. Low luminosity	0.49	3.0×10^{-2}
tracker isolation. High luminosity	0.34	2.0×10^{-2}
tracker+calo isolation. Low luminosity	0.46	1.3×10^{-2}
tracker+calo isolation. High luminosity	0.31	0.87×10^{-2}
$2 - \mu$ rec. + sec.vertex selections. Low luminosity	0.32	$\leq 2.3 \times 10^{-4}$
$2 - \mu$ rec. + sec.vertex selections. High luminosity	0.18	$\leq 2.3 \times 10^{-4}$
mass window 80 MeV	0.72	1.1×10^{-2}
number of events after cuts. Low luminosity	7.0	≤ 1.0 at 90% C.L.
number of events after cuts. High luminosity	26.0	≤ 6.4 at 90% C.L.

- 4σ observation after 3 years at 10fb⁻¹possible!
- BUT: CMS L1+high level trigger must select the events

Muons in the CMS L1 Trigger

Low Luminosity L1 trigger table

Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)
Inclusive isolated electron/photon	29	3.3	3.3
Di-electrons/di-photons	17	1.3	4.3
Inclusive isolated muon	14	2.7	7.0
Di-muons	3	0.9	7.9
Single tau-jet trigger	86	2.2	10.1
Two tau-jets	59	1.0	10.9
1-jet, 3-jets, 4-jets	177, 86, 70	3.0	12.5
Jet * E _T ^{miss}	88 * 46	2.3	14.3

- B physics triggered at L1 by single/dimuon trigger
- Low thresholds mandatory for B physics
 - \Rightarrow For $B_s \rightarrow \mu^+ \mu^-$ can use dimuon trigger!
- Electron channel disfavoured due to higher threshold

Muons in the High Level Trigger

- 30Hz out of total 100 Hz HLT output rate allocated to single/dimuon trigger
- Thresholds:
 1(2) muons: P_T>19(7) GeV
- b/c contribution in 1μ only
 ~25%: ~5Hz
 - Insufficient for rare decays<10⁻⁴

For rare B decays efficient online event reconstruction and selection mandatory!

Tracking at the High Level Trigger

- Limited amount of CPU time available for trigger decision, so need to reduce:
 - (a) Number of track seeds
 - (b) Number of operations per seed
- Regional seed generation
 - Limited to regions of interest (ROI) identified by L1 objects (e.g. cone around muon direction
- Partial / conditional tracking: Stop reconstruction if
 - N hits are reconstructed
 - Pt resolution > given threshold
 - Pt value < given threshold

Partial Tracking Performance

- Reconstruction time ~ number of hits
- Good efficiency, ghost rate, resolution with ~5 hits already

Further Important ingredient at HLT already: Alignment ...

A few remarks on CMS Alignment

Requirement:

Misalignments of the silicon and strip trackers must not compromise intrinsic resolution of 10...20μm

Three ingredients

- 1. Mounting precision
- 2. Laser alignment
- 3. Track based alignment

Mounting Precisions:

Sensor vs Module: 10...30 µm

Module vs Layer: 50...500 μm

Laser Alignment system

- Layer vs layer
- Barrel vs endcap
- Link to muon system

CMS Alignment Strategy

- CMS Startup ("day 0"): Laser alignment plus placement constraints: alignment to ~100μ
 - efficient pattern recognition possible for Δ <100-200 μ
 - BUT: only true if precise pixel seeds available!
- Laser alignment to monitor movements of TIB,TOB,TEC composite structures to ~10μ
- "Fast" track based alignment: monitor Pixel, TID (and other) composite structures
 - Important for HLT performance
- "Full" track based alignment:
 - alignment at sensor level to ~10μ for full tracker

Track based alignment

- Scale of the problem
 - ~20k Si sensors, i.e. O(100k) parameters
 - Covariance matrix O(100k * 100k)
 - Impossible for standard approaches
- Several Algorithms presently being studied
 - Straightforward LSQ approach (no correlations between sensors)
 - Kalman filter: novel approach, treatment of correlations avoiding large matrix inversions (R. Fruehwirth)
 - "Simulated Annealing"
 - New version of Millepede (V. Blobel)
- Data samples
 - Start-up: Cosmics, Beam-halo μ
 - − Physics: W \rightarrow μ ν , Z \rightarrow μ $^+$ μ $^-$

Results expected for

Physics TDR (end 2005)

B_s→ μ⁺μ⁻: trigger strategy

- L1 trigger selection
 - Double muon trigger, Pt>3 GeV |η|<2.1
- High level trigger (HLT) selection
 - Regional tracking: look for pixel seeds only in cones around the muons, Pt>4 GeV, d₀<1mm, compatible with primary vertex
 - Conditional tracking: reconstruct tracks from good seed
 - Stop reconstruction if Pt<4 @ 5σ
 - Keep only tracks with σ(Pt)/Pt<2%, N-hit>=6
 - If exactly 2 opposite sign tracks found:
 - Calculate M_{III}
 - Retain pairs with |M_{μμ}-M_{Bs}|<150 MeV
 - Vertexing: χ²<20 and d₀>150μm

L1 Efficiency	HLT Eff.	Global Eff.	Events / 10fb ⁻¹	Trigger Rate
15.2%	33.5%	5.1%	47	<1.7Hz

B_s mass resolution

High level trigger

Offline reconstruction

 N.B.: Invariant mass and vertex reconstruction assume perfectly aligned Pixel and strip tracker already online!

Conclusions

- CMS@LHC well suited for B physics (and rare B decays)
 - High Luminosity L=10³⁴cm⁻²s⁻¹
 - Precise all-Silicon tracking,
 - Powerful Muon system, also providing L1 trigger
- Cruical ingredients: Trigger and Alignment
 - Low Pt L1 muon treshold
 - Efficient online (HLT) reconstruction/selection of final states needed!
 - SVX and inv.Mass reconstruction rely on Alignment @ 10μm level!
- $B(B_s \rightarrow \mu^+ \mu^-)$ can place severe constraints on BSM models
 - In reach for LHC experiments
 - Observation with CMS possible