

# Track based Alignment in CMS



#### Frank-Peter Schilling (CERN)

#### LHC Detector Alignment Workshop 05/09/2006

#### Contents:

- Data samples
- Alignment strategy
- Alignment algorithms
  - HIP
  - Kalman Filter
  - Millepede-II
- Muon alignment with tracks





# Track based Alignment in CMS



- Large number of alignment parameters (~100,000 in tracker) requires novel techniques
- Three different alignment algorithms implemented in CMS reconstruction software (now transition from "ORCA" to "CMSSW")
  - □ Kalman Filter, Millepede-II, HIP Algorithm
  - ☐ Cross check results using different algorithms with different approaches and systematics
  - ☐ Supported by common software infrastructure
- Alignment using different data sets (dedicated MC generators)
  - Muons from Z,W; Cosmics; beam halo; muons from J/ψ, B; high pt QCD tracks

- Reduced data format (AlCaReco)
  - □ Development of fast Alignment stream (Z,W) produced during prompt reconstruction at Tier-0
- Combine track based alignment with laser alignment and survey data
- Employ mass and vertex constraints; use of overlaps
- Develop observables sensitive to misalignment other than  $\chi^2$ 
  - $\Box$  Monitoring, fix  $\chi^2$  invariant mode
- CMS alignment group ~20 people from ~8 institutes



### **Data Samples**



- High p<sub>T</sub> muons from Z,W decays

  - ☐ Gold plated for tracker alignment (small multiple scattering)
  - ☐ Exploit Z<sup>0</sup> mass constraint
- Cosmic Muons
  - □ ~400Hz after L1 and s.a. muon reco.
- Beam Halo Muons
  - □ ~5 kHz per side after L1 and s.a. muon
  - □ Problem: Muon endcap trigger outside tracker acceptance in R!
  - ☐ Potentially install scintillators (for startup) or use TOTEM T1
- Muons from J/ψ and inclusive B decays
  - □ J/ψ mass constraint
- Min. bias, high pt hadrons from QCD events
  - □ Potentially useful for pixel alignment







#### Simulation of Cosmics and Beam halo muons in CMS



#### Cosmic muons: 400 Hz





#### Beam halo muons: 5 kHz per side





CMS Note 2006/012

Rates after L1 and standalone muon reconstruction



### **Alignment Strategy**



#### **Basic scetch:**

- 2007: Before beams:
  - ☐ Cosmics (+laser alignment and survey measurements)
- 2007: single beams
  - add beam halo muons
- 2007: Pilot run, pixel detector not installed (except few test modules)
  - ☐ Cosmics, beam halo muons
  - ☐ add available high pt muons, tracks
  - ☐ Initial alignment of high level strip tracker structurs (layers, rods)?

2008:Two-step approach:

See next slides for rate estimates

- ☐ Add Larger statistics of muons from Z,W
- □ 1. Standalone alignment of pixel detector
- ☐ 2. Alignment of strip tracker, using pixel as reference
- To be layed out in more detail ...



#### Expected event rates



Pilot run 2007 @ 900 GeV, L~10<sup>29</sup>



Physics Run 2008 @ 14 TeV, L~10<sup>32...33</sup>

| Luminosity                  | $10^{32} { m cm}$     | $n^{-2}s^{-1}$   | $2 * 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ |                     |                       |  |
|-----------------------------|-----------------------|------------------|---------------------------------------------|---------------------|-----------------------|--|
| Time                        | few weeks             | 6 months         | 1 day                                       | few weeks           | one year              |  |
| Int. Luminosity             | $100 \text{ pb}^{-1}$ | $1~{ m fb^{-1}}$ |                                             | $1 \; { m fb^{-1}}$ | $10 \; {\rm fb^{-1}}$ |  |
| $W^{\pm} \to \mu^{\pm} \nu$ | 700K                  | 7M               | 100K                                        | 7M                  | 70M                   |  |
| $Z^0 	o \mu^+\mu^-$         | 100K                  | 1M               | 20K                                         | 1M                  | 10M                   |  |

 Large statistics of high pt muons within few weeks!



#### General Software Framework



- (MIs)alignment implemented at reconstruction level:
  - "Misalignment tools", move and rotate modules or higher level structures
- Dedicated "Misalignment Scenarios"
  - □ Short term scenario
    - o First data taking (few 100 pb<sup>-1</sup>)
    - o Pixel already aligned
    - o Strip tracker misaligned, only survey and laser alignment
  - ☐ Long term scenario
    - o Few fb-1 accumulated
    - o Full alignment performed, residual misalignments ~20μm
- Fast track refit (without redoing pattern recognition)
- Reduced data format containing only alignment tracks
  - ☐ Small file size, fast processing



- Algorithms implemented in standard CMS reconstruction software using a common layer of general functionality
  - Management of parameters and covariances
  - Derivatives wrt track and alignment parameters
  - ☐ I/O, Database connection



### HIP Algorithm: Formalism



- Minimization of track impact point (x) hit (m) residuals in local sensor plane as function of alignment parameters  $\epsilon = \left(\frac{\epsilon_u}{\epsilon_v}\right) = \left(\frac{u_{\rm X} u_m}{v_{\rm X} v_m}\right)$
- $\chi^2$  function to be minimized on each sensor (after many tracks per sensor accumulated)
  - □ V: covariance matrix of measurement
- Linearized χ² solution:
  - δp: vector of alignment parameters δp=( δu, δv, δw, δα, δ β, δγ)
  - $\Box J_i$ : derivative of residuals w.r.t.  $\delta p = \left[\sum_i J_i V_i^{-1} J_i^T\right]^{-1} \left[\sum_i J_i V_i^{-1} \epsilon_i\right]$  alignment parameters
- Local solution on each "alignable object"
  - □ Only inversion of small (6x6) matrices, computationally light

**CMS Note 2006/018** 

 $\chi^2 = \sum_i \epsilon_i^T V_i^{-1} \epsilon_i$ 



### HIP Algorithm: Formalism (cont.)



- o Formalism extended to alignment of composite detector structures (ladders, disks, layers etc.)
  - o Minimize χ² using all tracks crossing sensors of composite object with respect to alignment parameters of composite object
  - o Implemented using chain rule
- o Correlations between modules not included explicitely
- Implicitely included through iterations
- Large statistics → parallel processing:
  - □ Run on N cpu's processing 1/N of the full sample each
  - ☐ Combine results from all CPUs, compute alignment corrections
  - ☐ Stard next iteration on N cpu's

$$rac{\delta \epsilon_i^S}{\delta p_i^C} = rac{\delta \epsilon_i^S}{\delta p_i^S} imes rac{\delta p_i^S}{\delta p_i^C}$$

- Example: 1M Z→μμ events:
  - □ reduced DST format keeps only muon tracks
  - ☐ Refit track, don't re-reconstruct
  - ☐ With 20 CPUs in parallel, one iteration: ~45'



### HIP Algorithm studies



- Alignment of 720
   CMS Pixel Barrel modules
- "First data taking" misalignment scenario
  - ☐ Includes correlated misalignments
- 200K Z<sup>0</sup>→μ<sup>+</sup>μ<sup>-</sup>
   events, 10
   iterations



- Good convergence: RMS ~7μm in x,y ~23μm in z
  - Caveat: Alignment w.r.t ideal strip tracker



### HIP Algorithm studies



- Standalone alignment of pixel modules
- Minimize influence of misaligned strip detector:
  - ☐ refitting only pixel hits of the tracks
  - use momentum constraint from full track (significantly improves convergence)
- Two muons from Z<sup>0</sup>→μ<sup>+</sup>μ<sup>-</sup> are fitted to common vertex
- Flat misalignment ±300μm in x,y,z
- 500k events, 19 iterations
- Resonable convergence, RMS ~25μ m in all coordinates















## Kalman Filter Alignment



- Method for global alignment derived from Kalman Filter
- Ansatz:
  - ☐ measurements m depend via track model f not only on track parameters x, but also on alignment parameters d:

$$m = f(x, d) + \epsilon$$
  $cov(\epsilon) = V$ 

**□** Update equation of Kalman Filter:

$$\begin{pmatrix} \widehat{d} \\ \widehat{x} \end{pmatrix} = \begin{pmatrix} d \\ x \end{pmatrix} + K(m-c-Ad-Bx)$$

- ☐ For details, see talk by R. Fruehwirth!
- Iterative: Alignment Parameters updated after each track
- Global: Update not restricted to modules crossed by track
  - ☐ Update can be limited to those modules having significant correlations with the ones in current trajectory
  - ☐ Requires some bookkeeping
  - No large matrices to be inverted!
- Possibility to use prior information (e.g. survey data, laser al.)
- Can add mass / vertex constraints



## Kalman Filter Alignment (cont.)



- Wheel-like setup: (part of CMS tracker: 156 TIB modules)
- Pixel detector as reference
- Misalignment:
  - □ local x,y σ=100μm
- Update restricted to distance d<sub>max</sub>≤6
- Single muons p<sub>T</sub>=100 GeV
- Convergence slower in outer layers (distance from reference system, less track statistics)







# Kalman Filter Alignment (cont.)



• Overall RMS ~21μm after alignment





Dependence of RMS and CPU time on d<sub>max</sub>

| $d_{ m max}$                | 1     | 2     | 3     | 4     | 5     | 6     |
|-----------------------------|-------|-------|-------|-------|-------|-------|
| $\sigma  [ \mu \mathrm{m}]$ | 24.75 | 21.38 | 20.97 | 20.95 | 20.94 | 20.94 |
| T[s]                        | 472   | 604   | 723   | 936   | 1152  | 1319  |

• d<sub>max</sub>=6 does not exclude modules with relevant correlations





### Millepede II Algorithm



- For formalism, see talk of V. Blobel
- Original Millepede method solves matrix eqn. Ax = B, by inverting huge matrix A. Can only be done for <12000 alignment parameters</li>
- New Millepede II method instead minimises |A x B|. Expected to work for ~100000 alignment parameters (i.e. for full CMS at sensor level)
- Both successfully aligned ~12% of tracker modules using 2M Z→μμ events. Results identical, but new method 1500 times faster!





### Millepede-II in CMS



- Alignment of the strip tracker at sensor level
- Barrel region,  $|\eta|$ <0.9, 12015 alignment parameters

(Mis)alignment in ro. r. z. v at half-barrel / laver / rod / module levels







# **CPU Requirements** (Millepede-II)



#### CPU time in hours as a function of number of parameters



# **CPU Time for CMS** (100k parameters):

- Diagonalization
  - ~10 year at one CPU
- Inversion:
  - ~1 year at one CPU
- Iteration:
  - ~1 h at one CPU

- New Millepede-II (iterative method) scaleable to full CMS problem
- Alternative: massively parallel algorithm (difficult to implement)
- Memory needs (dep. on sparseness of matrix) under study...



#### Importance of using "complete" datasets



- Collision tracks and cosmics populate different parts of global covariance matrix → reduce global correlations!
- Example: Alignment of CMS strip barrel rods and layers
  - □ Only one layer fixed
  - □ 500k Z<sup>0</sup>→μμ with vertex constraint
  - ☐ 100k Cosmics
- Use Z<sup>0</sup> tracks only:
  - No solution
  - Matrix singular
- Use Z<sup>0</sup> and Cosmics:
  - □ Problem solvable
  - □ Resonable correlations





Simplified simulation and scenario, Now look at realistic study ...



#### Global correlations: Realistic scenario



- Realistic alignment scenario of the CMS pixel and strip barrel studied
- Dasets and prior information:
  - **□** 250k Z<sup>0</sup>→μμ with vertex constraint
  - ☐ 500k Cosmics
  - Survey information
- Global correlations of alignment parameters high (can be >99%)
  - ☐ Independent of alignment algorithm!
- Cosmics (and beam halo, shifted vertex?!) very important to decrease global correlations!

M. Stoye (Hamburg)

#### Correlations of translations in x

- layers/halfbarrels and
- halfbarrels/CMS





# Muon system Alignment with tracks



- 790 chambers ⇒ "only" ~5000 alignment parameters
- Main differences w.r.t. Tracker Alignment:
  - □ Large amount of material for tracks crossing barrel-endcap
  - ☐ Chambers assumed as rigid body: provide vector information useable for alignment
- Two approaches
  - ☐ Alignment using tracks extrapolated from tracker
  - □ Standalone muon alignment



 Standalone muon alignment using W→µv events corresponding to 50h of data taking at 10<sup>34</sup>



#### Conclusions



- Alignment of the CMS tracker and muon system is a challenge ☐ Large number of parameters (~100,000 in tracker) High intrinsic resolution of devices A lot of ongoing work on track based alignment already now ☐ Implementation and further development of algorithms o Initial results promising o Not yet demonstrated realistic alignment of full tracker at sensor level ☐ Alignment studies using various MC data sets □ Dedicated HLT alignment stream ☐ Use of overlaps, mass and vertex constraints ☐ How to combine with Laser Alignment and Survey? Define monitoring observables other than  $\chi^2$  ("global modes") **Condition Database infrastructure** Alignment of test beam and cosmics data □ Tracker "Cosmic Rack" test structure ■ Magnet Test & Cosmic Challenge (MTCC) data
- Aim for having all ingredients in place when data will arrive!