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Preface

This volume contains the papers presented at the 9th IAPR TC3 Workshop on Artificial
Neural Networks for Pattern Recognition (ANNPR 2020), held in virtual format and
organized by Zurich University of Applied Sciences ZHAW, Switzerland, during
September 2–4, 2020. ANNPR 2020 follows the success of the ANNPR workshops of
2003 (Florence), 2006 (Ulm), 2008 (Paris), 2010 (Cairo), 2012 (Trento), 2014
(Montreal), 2016 (Ulm), and 2018 (Siena). The series of ANNPR workshops have
served as a major forum for international researchers and practitioners from the com-
munities of pattern recognition and machine learning based on artificial neural
networks.

From the 34 manuscripts submitted, the Program Committee selected 22 papers for
the scientific program, organized in several sessions on foundations as well as practical
applications of neural networks for pattern recognition. The workshop was enriched by
four keynote presentations, given by Bernd Freisleben (University of Marburg,
Germany), Pascal Paysan (Varian Medical Systems Imaging Laboratory, Switzerland),
Jürgen Schmidhuber (Dalle Molle Institute for Artificial Intelligence, USI-SUPSI,
Switzerland), and Naftali Tishby (Hebrew University of Jerusalem, Israel).

A broad range of topics were discussed at the workshop. In the area of foundations
of machine learning and neural networks for pattern recognition, papers discussing
novel developments using predictive autoencoders, support vector machines, as well as
recurrent and convolutional neural networks were presented. On the other hand,
applications and solutions to real-world problems were discussed for topics ranging
from medical applications (pain recognition, dermatologic imaging, cancer histology,
mammography), finance, industrial applications (QR-Code detection, wear detection of
industrial tools, geotechnical engineering, 3D point clouds processing), text-to-speech
synthesis, and face recognition to weather forecasting and crop species classification.

The planning of ANNPR 2020 was significantly impacted by the consequences
of the COVID-19 pandemic, which forced us in the end to move the workshop to an
online format; the first time in its history. At the time of writing this foreword, the
workshop was still ahead of us, but our goal was to create an engaging and stimulating
online conference.

A new feature for the series of ANNPR workshops, stimulated by the fact that the
2020 edition was hosted by a university of applied sciences, was the applied research
session on the afternoon of the second day of the event, which aimed to bridge the gap
between purely academic research on the one hand, and applied research as well as
practical use-cases in an industry setting on the other hand. To this end, we invited
companies, from start-ups to multinationals, to showcase their own research and
applications of neural networks for pattern recognition, to solve real-world problems.

The workshop would not have been possible without the help of many people and
organizations. We are grateful to the authors who submitted their contributions to the
workshop, despite the difficult situation caused by the pandemic. We thank the



members of the Program and Extended Organizing Committees for performing the
difficult task of selecting the best papers from a large number of high-quality
submissions.

ANNPR 2020 was supported by the International Association for Pattern Recog-
nition (IAPR), by the IAPR Technical Committee on Neural Networks and Compu-
tational Intelligence (TC3), by the Swiss Alliance for Data-Intensive Services, and by
the School of Engineering of Zurich University of Applied Sciences ZHAW. We are
grateful to our sponsoring partners, who not only have financially supported us, but
also contributed relevant examples for practical applications and use-cases for using
neural networks in pattern recognition during the applied research session. Finally, we
are indebted to the secretariat of the Institute of Applied Information Technology (InIT)
at ZHAW for their administrative support. Finally, we wish to express our gratitude to
Springer for publishing these proceedings within their LNCS/LNAI series.

July 2020 Frank-Peter Schilling
Thilo Stadelmann
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Deep Learning Methods for Image
Guidance in Radiation Therapy

Pascal Paysan(B) , Igor Peterlik, Toon Roggen , Liangjia Zhu,
Claas Wessels, Jan Schreier, Martin Buchacek, and Stefan Scheib

Varian Medical Systems Imaging Laboratory GmbH,
Taefernstr. 7, 5405 Daettwil, Switzerland

pascal.paysan@varian.com

http://www.varian.com/

Abstract. Image guidance became one of the most important key tech-
nologies in radiation therapy in the last two decades. Nowadays medical
images play a key role in virtually every aspect of the common treatment
workflows. Advances in imaging hardware and algorithmic processing are
enablers for substantial treatment quality improvements like online adap-
tation of the treatment, accounting for anatomical changes of the day, or
intra-fraction motion monitoring and organ position verification during
treatment. Going through this rapid development, an important obser-
vation is that further improvements of various methods heavily rely on
model knowledge. In a classical sense such model knowledge is for exam-
ple provided by mathematically formulated physical assumptions to ill-
posed problems or by expert systems and heuristics. Recently, it became
evident that in various applications such classical approaches get outper-
formed by data driven machine learning methods. Especially worth to
mention is that this not only holds true in terms of precision and com-
putational performance but also in terms of complexity reduction and
maintainability. In this paper we provide an overview about the different
stages in the X-ray based imaging pipeline in radiation therapy where
machine learning based algorithms show promising results or are already
applied in clinical routine.

Keywords: Radiation therapy · X-ray imaging · Cone Beam
Computed Tomography (CBCT) · Image Guided Radiation Therapy
(IGRT) · During treatment motion monitoring · Tissue tracking ·
Automatic segmentation · Artificial intelligence · Deep learning

1 Introduction

A typical radiation therapy treatment starts with a diagnosis based on Com-
puted Tomography (CT), Magnetic Resonance Imaging (MRI), Single-Photon
Emission Computed Tomography (SPECT), Positron Emission Tomography -
CT (PET/CT), or a combination of medical imaging modalities [48]. A first
step in radiation therapy is typically the acquisition of a so-called simulation
c© Springer Nature Switzerland AG 2020
F.-P. Schilling and T. Stadelmann (Eds.): ANNPR 2020, LNAI 12294, pp. 3–22, 2020.
https://doi.org/10.1007/978-3-030-58309-5_1
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CT scan, where the patient is positioned in its treatment position. The simula-
tion CT serves as a quantitative patient model which is used in the treatment
planning process. Typical tasks are anatomy delineation, optimization of the
radiation beam entrance angles and dose calculation. This acquired CT scan
serves also as the baseline anatomy of the patient. During the different treat-
ment sessions, the patient will be positioned as closely to this simulated position
as possible to minimize position uncertainties. For imaging during treatment
nowadays, the vast majority of radiation therapy systems rely on x-ray imaging
using flat panel detectors. Figure 1 demonstrates this kV image acquisition with
a patient in treatment position.

Fig. 1. Varian TrueBeam radiation therapy delivery platform, acquiring kV images of
a patient in treatment position.

Reasons for that are the relatively low complexity, versatile applications, and
affordability of these x-ray imaging systems. The x-ray system is used mainly for
position verification relative to the treatment planning position but also for dur-
ing treatment motion monitoring and rather lately for plan adaptation. Depen-
dent on the needs for the different tasks in radiation therapy the x-ray based
imaging system mounted on the treatment delivery device (on-board imaging)
can be used to acquire different types of images such as 2D x-ray projections, flu-
oroscopic projection sequences, 3D Cone Beam CT (CBCT) images, and motion
resolved 4D CBCT images. Future trends are clearly to use the on-board imag-
ing systems for additional tasks throughout the therapy such as direct organ
segmentation and direct dose calculation based on the acquired 3D or 4D CBCT
data and for soft-tissue motion monitoring during treatment. Finally, the patient
being under fractionated treatment (up to 40 fractions) is sometimes in parallel
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monitored using CT, MRI, PET/CT, or SPECT/CT to assess the treatment
response. This should preferably be (at least partially) replaced by on-board
imaging-based procedures available at the treatment device. Technically, the
imaging pipeline of the on-board imaging system starts with the x-ray imaging
hardware consisting of the x-ray tube and the flat panel detector. The detector
acquires 2D projections for example as single frames (triggered images) to per-
form an image match against the planning CT prior each fraction or to verify the
internal anatomy at certain control points during radiation beam delivery within
a fraction. The projections can be as well acquired as a sequence either from a
single viewing direction to verify for example certain internal motion trajecto-
ries or during rotation of the treatment delivery device (typically called gantry)
around the patient to perform motion management. An elementary part of the
motion management is tracking internal structures of the patient on acquired
projections. For volumetric imaging the system rotates around the patient and
acquires a sequence of projections which allows to reconstruct a 3D CBCT image.
This includes reconstructions that are resolved with respect to phases of respi-
ratory motion (4D CBCT) [75] and even respiratory as well as cardiac motion
(5D CBCT) [68]. Having the images at hand, deformable image registration and
automatic segmentation [26] are recently a topic of growing interest in the con-
text of adaptive radiotherapy. In the following, we want to discuss where it is
already state of the art or where we see the potential (or already evidence) to
apply learning-based methods to improve X-ray guided radiation therapy and
thus clinical outcome.

2 Motion Monitoring During Treatment

Unlike conventional radiation therapy delivery schemes that typically deliver
2 Gy per daily fraction over several weeks, Stereotactic Body Radiation Therapy
(SBRT) delivers high doses in a few or even a single fraction (6–24 Gy, 1–8 frac-
tions) [19,63]. This allows for an increased tumor control and reduces toxicity
in healthy tissues. To ensure a sub-millimeter accuracy for the high dose depo-
sition in SBRT, during-treatment motion management is indispensable. Correct
patient setup on the day of the treatment is accomplished by image registration
on a 3D CBCT, followed by a couch adaptation. A position verification during
delivery of the fraction could be a 3D-3D match at mid- and post-delivery time
with a re-acquired CBCT. Alternatively, a 2D-2D match or a 2D-3D match at
certain angles can be applied. In the above cases the treatment beam is inter-
rupted and resumed after the position had been confirmed. The drawback is
that during actual treatment delivery the therapist is blind to any motion that
occurs. An excellent overview of classical state of the art motion monitoring
methods with the beam on is given in [6]. Of interest are the tracking meth-
ods that use kV/kV imaging with triangulation for 3D position information
(CyberKnife R©), Sequential Stereo (Varian Medical Systems), which sequentially
acquires 2D images with a single imager, and approaches based on a Probability
Density Function (PDF). Proclaimed accuracy of the Euclidean distance in 3D
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space is 0.33 mm on phantom data and a time delay to acquire sufficient images
for the 3D reconstruction is to be considered. Alternatively, updating the raw
image stack with the latest 2D acquisition, smears out the position change that
occurred on the last 2D image in the 3D volume that also contains all previ-
ous images that did not undergo this motion. Methods based on a PDF map
based on pre-treatment-day acquired 4DCT data [36] proclaim an accuracy of
the Euclidean distance in 3D space of 1.64 ± 0.73 mm. Deep learning methods
are being developed to further improve these results and are being discussed
below for both bony structures and soft tissue.

2.1 Tracking of Bony Structures

For spine tumors, neighboring vertebrae can serve as anatomical landmarks and
periodically acquired 2D kilovoltage (kV) images during treatment allow for a
fast detection model to compare the vertebrae positions to the reference positions
for a specific gantry angle. A CTV to PTV margin, representing all expected
uncertainties including motion during delivery, is recommended to be <3 mm
in [49]. Recommendations on patient setup accuracy (positioning of the patient
on the couch before delivery of the treatment) are <2 mm for translations, <3◦–
4◦ for roll and pitch and <10◦ for yaw, according to [5]. A dosimetric study
for spine stereotactic treatments recommends a patient setup translational error
≤1 mm and a rotational error ≤2◦ [79] while the rotational setup error recom-
mendation is reduced to ≤1◦ in [15]. Note that in all above situations a 3D setup
CBCT or other volumetric verification is available. However, as the patient is not
supposed to move anymore after correct setup, the above recommendations can
also be projected to in-treatment position monitoring. An intrafraction study of
spine SBRT treatments that acquired CBCTs during treatment delivery reports
position standard deviations of up to 1.3 mm, and this for each of the three main
axes: chest-back, left-right and head-feet [49].

In [66] a Deep Learning (DL) model based on Mask R-CNN (Regional Con-
volutional Neural Network) is described for vertebra detection of the thoracic
spine (T9–T12) and the lumbar spine (L1–L4). It differs from the above methods
in two key aspects: First, the model does not rely on temporal imaging informa-
tion, acquired prior to the delivery time instance where the position is verified.
Second: The model generalizes for vertebra in a human corpus, which means no
patient-specific information is needed or models need to be trained prior to treat-
ment delivery. The model allows for a fast structure localization (<2 Hz) on 2D
kV projection images that are acquired during the VMAT treatment delivery. It
allows assessing instant 2D position verification, using segmentation, along the
delivery of the VMAT arc as well as sequential (delayed) 3D position verification,
when the subsequent projection images are included in a Digital TomoSynthesis
(DTS) or CBCT. Alternatively, making use of a stereoscopic dual imager setup,
the 2D position pairs can be triangulated to obtain an instant 3D position.
Intensity-Modulated Radiation Therapy (IMRT) and 3D Conformal Radiother-
apy (CRT) can benefit from the DL model for fast structure localization as well,
as long as 2D kV projection images are acquired. Typical model training times
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vary from 1–3 days on an Intel Xeon W-2102 2.90 GHz CPU with 32 GB RAM
and an NVIDIA GeForce GTX 1080 Ti with 12 GB RAM. The model’s accuracy
to detect and estimate motion is assessed offline using the well-known Mean
Average Precision (mAP) metric [57]. Although the mAP metric makes a lot of
sense in the computer vision domain, from a clinical perspective there are other
more important metrics to consider: In this study the motion of the 2D Centre
of Mass (CoM) of the vertebra is assessed for the best model as identified by the
mAP. The test data in the first assessment contains actual patient data. In addi-
tion, a patient-like full-body phantom with vertebrae (PIXY TPO-1067 [38]) in
treatment position is moved in a controlled setup and the motion detection is
assessed by the DL landmark detection model for vertebra and compared to its
ground truth.

Fig. 2. Left: 2D projection image of a patient not previously seen by the model. Right:
Vertebrae detected by the model and their derived CoMs (blue dots). (Color figure
online)

An ordinary 2D kV projection image (Fig. 2, left) needs to be provided to the
model, which returns a segmentation mask, a bounding box and a classification
label (not shown) for each vertebra that is detected (Fig. 2, right). Additionally,
the 2D CoM is calculated from the segmentation. Figure 3 summarizes the model
performance on CoM motion detection (for isocentric shifts/rotations), based
on 50 structures, detected on different projection angles uniformly distributed
over the acquired arc. The motion was introduced in the head-feet (vertical)
direction and the horizontal direction. Depending on the gantry angle this would
correspond to a combination of a chest-back and a lateral motion. To detect a
rotational change based on the CoM (a single point), at least 2 vertebrae CoMs
are required. This study considers all vertebrae in the field of view. Figure 4
shows the probability of a tracking error in the range of 0–2 mm. The different
curves show the probability at different shift amplitudes that were carried out
as well as the probability when all shift amplitudes are evaluated together.
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Fig. 3. Detection accuracy of CoM motion for four shifts in chest-back or lateral (equiv-
alent to the horizontal direction on the image) and head-feet (vertical direction on the
detector) direction (left graph). A combined shift-rotation was introduced as well,
where its equivalent shift of the CoM in 2D was assessed. The right graph shows three
rotation offsets for angular directions α (right graph). Detections were performed for
5 vertebrae fully visible on all 10 projection images of a patient previously not seen by
the model (blind data set). Δs is the 2D vector offset between both positions. Δα is
the 2D angular offset between both positions. The orange line represents the median
value, and the box comprises all values between quantiles 1 and 3. The whiskers are
set to contain all values within 1.5 x IQR (Inter-Quartile Range: Q3–Q1).

Fig. 4. Probability of a tracking error Δs in the range of 0–2mm. The different curves
show the probability at the different shift amplitudes of Fig. 2, as well as the probability
when all shift amplitudes are evaluated together.

The second assessment involves the PIXY patient-like full-body phantom
with vertebrae. The results for a position change detection based on a single
vertebra are shown in Figure 5. The data for one shift s contains a total of 40
structure shifts, detected on projection images that are orthogonal to the chest-
back or lateral axes (Gantry angles: 0◦, 90◦, 180◦ and 270◦). In total three such
shifts s were analyzed: 25.46 mm, 11.31 mm and 4.24 mm. Figure 6 shows the
probability of a tracking error in the range of 0–2 mm. The different curves show
the probability at the different shift amplitudes that were carried out as well as
the probability when all shift amplitudes are evaluated together.
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Fig. 5. Detection accuracy of CoM motion of a phantom on the treatment couch for
shifts in the chest-back (x) and head-feet (y) direction, where s is the resulting shift
vector. A total of 40 vertebrae positions were analyzed for each of the three shifts. Δs
is the 2D vector offset between both positions. The orange line represents the median
value, and the box comprises all values between quantiles 1 and 3. The whiskers are
set to contain all values within 1.5 x IQR (Inter-Quartile Range: Q3–Q1).

Fig. 6. Probability of a tracking error Δs in the range of 0–2 mm. The different curves
show the probability at the different shift amplitudes of Fig. 5, as well as the probability
when all shift amplitudes are evaluated together.

The above results show a sensitivity for positional changes in the range of
1.5 mm, with a median below 0.5 mm. Combining positional information of all
vertebrae visible on a single projection image yields a sub-millimeter motion
detection up to the smallest shift of 1 pixel-equivalent on the detector. The
experiments with the phantom confirm these results. Spine rotations above 1◦

can be identified, at 0.5◦ detection becomes unstable.

2.2 Soft Tissue Tracking

Soft tissue position tracking is crucial in motion monitoring during radiation
therapy to ensure that high dose delivery is confined to the tumor (Fig. 7) and
not to the surrounding healthy tissue. Significant efforts have been made to
improve the accuracy and robustness of soft tissue tracking in the past [39], where
kV x-ray imaging is probably the most commonly used imaging modality for a
number of practical reasons. One big challenge is the lack of sufficient contrast
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between soft tissue and background, which makes it different from regular visual
object tracking in computer vision [47]. To tackle this issue, different approaches
have been proposed in the literature by either utilizing treatment planning infor-
mation or exploiting medical physics knowledge in imaging. Machine learning,
especially deep learning, algorithms have become increasingly popular in this
domain.

Fig. 7. Example image for pancreas tracking [41] on simulated CBCT (left) and short-
arc CBCT (20◦, right) with overlaid pancreas contour (yellow) and tracked contour
(blue) (Color figure online)

Treatment planning imaging contains rich information about target charac-
teristics and motion that can be represented by mathematical models or encoded
in deep neural networks (DNNs). In [35], 3D diaphragm motion models were
generated from segmented 4D CT images and then forward projected to the 2D
X-ray panel geometry for diaphragm tracking. In [86], the simulation CT was
deformed and transformed to generate enough synthetic digitally reconstructed
radiographs (DRRs) along with known tumor locations. Then, a DNN was used
to model the relation between DRRs and their corresponding bounding boxes of
tumors. This model was applied to predict tumor locations in real projections
acquired during the actual treatment.

Physics-based approaches aim at exploiting hardware advances to improve
soft tissue contrast. Dual energy (DE) imaging and multi-layer detectors are
among these promising technologies. For example, a fast-kV switching DE fluo-
roscopy was implemented on a bench top system by alternating between high and
low x-ray energies. Bony anatomy was suppressed using the classical weighted
logarithm subtraction (WLS) method [34]. A deep learning model was used to
improve the accuracy of WLS [33]. In X-ray imaging, a stacked flat panel detector
design allows to get a plurality of images with low and high signal to noise ratio
(SNR) and high and low spatial resolution, respectively. Image fusion schemes
are available to take advantage of such “low - high” and “signal - resolution”
information to combine images together with the aim to maximize SNR of the
fused image and prevent loss of spatial resolution [88].
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3 CBCT Image Reconstruction

Nowadays, volumetric imaging is arguably an integral part of the workflow in
radiation therapy. While initially it was mainly intended for bone-based 3D
positioning of the patient, it has progressively become an important tool for soft
tissue matching thanks to improvements in image quality of the reconstructed
volume. Recently, these improvements allowed for adaptive radiation therapy
where the treatment plan is being adapted to the anatomical changes directly
during a fraction prior the actual treatment. Clearly, improving image quality is
the key aspect of the successful deployment of volume reconstruction methods
and the actual progress in machine learning brings new opportunities in this
area.

A typical image reconstruction pipeline consists of pre-processing performed
in the projection space, analytical or iterative reconstruction, and volume post-
processing.

3.1 X-ray Projection Pre-processing

The pre-processing phase already provides several opportunities for a successful
application of deep learning (DL) methods. A good example is the correction
of signal degradation caused by X-ray photons that are scattered within the
patient body [22,54]. The approach is to use Monte Carlo Methods as forward
simulation of primary and scatter signal and train a U-net type regression to
predict the scatter component out of the combined signal acquired by the flat
panel detector.

Metal artifacts in CBCT are another prominent example where projection-
based corrections with the help of DL show advances compared to classical
approaches [50,52,53,60,83]. The speciality here is that the X-ray beams pen-
etrating metal objects are affected by various physical effects, namely beam
hardening, increased scatter, and high noise because of the strong attenuation.
This makes it nearly impossible to use the affected information directly and thus
requires to include the prior knowledge into the reconstruction process.

3.2 CBCT Volume Post-processing

An obvious application of DL methods is post-processing of CBCT volumes per-
formed to correct for inaccuracies and artifacts. A beneficial aspect here is that
the generation of training data for supervised learning is often quite straight-
forward: A prominent scenario is to generate training pairs with the complete
projection set as ground truth and a projection subset (sparse-view) as a sim-
ulation of low dose scans [31,43,85]. All these methods apply classical filtered
back-projection (FBP) to perform the first reconstruction affected by typical
sparsity streaks and use neural networks, such as U-Nets, to improve the quality
of the final image. The reconstruction and subsequent correction of limited-angle
acquisitions have been addressed using a similar approach [70,80]. However, it
has been pointed out that these approaches cannot guarantee that the output
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image faithfully represents the anatomy of the patient and does not fabricate
fictitious structures due to the prior knowledge trained on a patient population.
A possible mitigation is through the comparison of the reconstructed volume
against the acquired projections by applying forward projections and enforce
minimal differences [46]. A hybrid approach has been proposed in [37] to reduce
artifacts related to the incompleteness of input projections due to limited-angle,
sparseness and truncated acquisition: In the first phase, an U-net is employed to
complete the insufficient input data. The completed set combining both the mea-
sured and computed projections is then reconstructed by conventional iterative
reconstruction technique. A rather rarely addressed topic is the field of motion
artifact reduction. This is presumably because of the general lack of motion-free
ground truth training data. In [61] we proposed a framework for CBCT motion
artifact simulation and applied it in a proof of principal study [62] to train a
U-net based artifact reduction method in the image domain (see Fig. 8).

Fig. 8. Examples of training data used for DL-based motion artifact reduction [62] gen-
erated by applying 4DCT based motion simulation using recorded breathing curves [61].
The columns show from left to right the simulation with motion artifacts X, the desired
output representing the average motion during scan Y , the artifact image X − Y , the
image after applying the predicted artifact Y − P , and the predicted artifact P .

3.3 Iterative CBCT Reconstruction Methods

Apart from FBP, iterative methods represent a common technique for CT image
reconstruction. Here the reconstruction corresponds to a step-by-step minimi-
sation of the objective loss function �(f, p,A) defined in terms of the recon-
structed volume f , acquired projections p and the system matrix A relat-
ing the volume voxels to pixels in the projection space. The loss function
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�(f, p,A) = ψ(f, p,A) + r(f) consists of the data fidelity term ψ(f, p,A) enforc-
ing consistency of the reconstructed volume with acquired projections and the
regularization term r(f) encouraging reconstructions to satisfy a priori assumed
properties, e.g. piece-wise smoothness. The common choices for the former
include the L2-norm projection error ||Af−p||22 [28] or the statistical loss function
[20,65] taking into account the stochastic nature of signal detected in the projec-
tions. The regularization is often represented by variants of the total-variation
[23]. During each iteration step, the update of f is calculated by comparing
the forward-projected volume Af to the acquired projections; the mathematical
formulation depends on the precise form of the objective loss function, the cho-
sen regularizer and the iteration scheme [2,28]. Machine learning techniques can
then alter this general scheme in a number of ways.

The first set of methods includes learning prior information from a training
dataset containing high-quality reconstruction or alternatively general images.
The learned information is then used at each iteration step to enhance the quality
of limited-angle or sparse-view reconstructions. The learned information can be
as simple as texture content in similar patches [42] while deploying deep neural
networks allows for extracting higher-level features and for greater expressivity.
In [10], a deep residual convolutional neural network (CNN) was trained for
image denoising on the COCO dataset [51] and then used as a filter at each
iteration step. In [13], a CNN is trained on a dataset containing high-quality
reconstructions to yield ground truth images by refining unfinished iterations.
The trained CNN then defines a regularization term enforcing the volume to lie
close to the ground truth.

In another set of methods, each iteration step is partially replaced by a
deep neural network and the whole unrolled system is trained at once, having
the subsampled set of projections as an input and high-quality reconstructions
as target. Examples include [77] or [11,17]; in the latter, a DenseNet-inspired
network is used in each iteration step to propose an optimal volume update
based on the current as well as the previous gradients of the loss function; this
is in fact a generalization of the Nesterov momentum [78] used for the speedup
of iterative reconstruction.

3.4 End-to-End CBCT Image Reconstruction Learning

The last class of reconstruction algorithms that we want to mention here is
applying deep learning in an end-to-end approach where pre- and post-processing
(in projection and volume domain) are jointly trained. Here one of the foundation
papers by Würfl et al. [81] uses neural networks to learn filter and weighting in
projection space while evaluating loss functions in the image domain. Other
prominent examples are the previously mentioned methods for metal artifact
reduction by Lin and Lyu et al. [52,53] but also for the limited angle scans [30].
Zhu et al. [87] proposed to learn the complete reconstruction process including
domain transformation between the projection and volume space. That implies
learning the system matrix which is normally well known.
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An alternative approach to DL-based end-to-end reconstruction is presented
in [24]: a continuum of intermediate representations is employed to break down
the original problem, where line integrals are gradually restricted via partial line
integrals until the level of image voxels is attained. The resulting hierarchy is
mapped onto the network architecture, allowing for significant reduction of the
computational complexity.

3.5 4D CBCT Reconstruction

In 4D reconstruction normally 10 volumes with respect to their respiratory phase
are reconstructed from acquisitions with approximately the same number of
projections as needed for a 3D scans and subsequently utilizes approximately
the same dose. This leads to strong under-sampling of the phases and makes
it even harder to obtain a certain image quality. Classical approaches try to
join information from all phases by using an initial combined reconstruction
(MKB) [76], temporal regularization (4DTV) [64], or by applying deformable
registration between the phases (MoCo) [7].

In [12] an iterative deep learning approach derived from the 3D AirNet
method [11] has been applied to reduce sparseness streaks in 4D CBCT recon-
structions. Zhang et al. [84] proposes a motion compensated reconstruction algo-
rithm applying deep learning for patient population based deformation field
refinements. A method for the suppression of sparseness artifacts in cardiac
CT imaging based on learned data exchange between phases with cyclic loss has
been presented by Kang et al. [44].

In motion resolved reconstructions the challenge is to overcome the sparse
sampling of the motion resolved images by reusing information from other motion
states. This implies that the ongoing motion needs to be resolved up to a certain
extent, what makes the problem even more ill-posed and therefore prior infor-
mation about anatomy and physiological motion needs to be taken into account.
Further challenges are to overcome the phase correlated reconstruction and to
address motion amplitudes [69].

4 Deep Learning for Organ Segmentation

For the generation of a radiotherapy treatment plan, the position of the tumor as
well as surrounding organs need to be known. In a typical workflow, a clinician
contours these structures on either a CT or an MRI image.

Previously, the automatic segmentation of anatomical structures was per-
formed by heuristic algorithms, such as thresholding [3] or watershed [74] and
joined to be applied for a complete anatomical site [29]. However, these algo-
rithms need to be specifically designed for each organ. The advancements in deep
learning now make it feasible to generate segmentation solutions for a multitude
of different anatomical structures using the same or similar underlying neural
networks. These are then trained on example segmentations to adapt to the par-
ticular structure. The underlying neural network is most often a convolutional
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neural network as its architecture is especially suited for image-related tasks.
More specifically the U-Net [67] and derivations from it, such as the Tiramisu [40]
and BibNet [71], are commonly employed for anatomical segmentations.

One limitation of the above-mentioned networks is their incapability to learn
strong shape priors. This leads to inadequate performance in case of weak image
quality. Methods such as anatomically constrained neural networks [59], try to
circumvent it by forcing the network to learn a shape representation. With the
described methods above, organ segmentation algorithms have been developed
for many different anatomical sites such as abdomen [9], female breast [56,71],
head and neck [58], female pelvis [32], male pelvis [73] and thorax [18]. In the
case of head and neck and male pelvis, performance on par with clinicians have
been reported.

A special challenge is to perform automatic segmentation directly on CBCT
reconstructions [1] due to its, in some aspects, inferior image quality compared to
CT (see Fig. 9). Residual motion is apart from scatter one of the most prominent
challenges that especially makes it hard to define the ground truth.

Fig. 9. Exemplary pancreas automatic segmentation result (red) on a CBCT vol-
ume [1]. (Color figure online)

The integration of these algorithms in clinical practice faces one additional
hurdle: The data used for training the deep neural network may originate from
a different hospital or even geography. For a CT segmentation, there is evidence
that for most structures the quality remains unimpaired by training on data
from a different hospital as long as the segmentation guidelines are identical
[72]. For MRI segmentation, the quality improves if data from the employing
hospital is included in the training or as part of an on-boarding process [27]. An
alternative way to overcome this challenge is the implementation of a distributed
learning method that is able to leverage the data from multiple hospitals in a
privacy-preserving manner [14].
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5 Deformable Image Registration

It is of upmost importance in radiotherapy that the prescribed dose is being
delivered to the target as conformal as possible while sparing neighboring organs
at risk.

Patients anatomy changes from day to day. This might lead to misadmin-
istrating the dose, thus not fulfilling the clinical goals. To avoid this, adaptive
radiotherapy was introduced (ART) [45]. Here, a patient image of the day is used
to update the deprecated treatment plan. Furthermore, one needs to track the
absorbed dose in each organ to ensure the correct dose coverage of the tumor
and not overdosing the risk organs during the whole treatment based on multiple
fractions. This process is called dose accumulation.

In both steps, deformable image registration (DIR) is being used. DIR is
morphing the original image to the updated image set of the day. The “path”
of each voxel is saved as a 3D vector in a deformation vector field (see Fig. 10)
which can later be used to deform the dose as well for accumulation.

Fig. 10. A deformation vector field (arrows) to morph one CT (grey in the foreground)
to the other CT (black in the background) of the same patient in different breathing
phases.

However, due to the vast number of voxels that need to be compared and
moved around based on optimization algorithms, a conventional DIR [8] can
take up to minutes until it finishes. That is the first opportunity for DL to help.
As soon as the patient is positioned and the images of the day are recorded
everything should be fast to start dose delivery to avoid anatomy changes [21]
or patient position changes. DL based DIR can be done within a fraction of a
second [4,16] for 3D image volumes, which is a considerable improvement over,
e.g. 1 min.
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Another point where DL might help to improve the results is later in the pro-
cess of dose accumulation. Classical DIR algorithms follow a fixed set of param-
eters and therefore perform better or worse depending on the image which needs
to be deformed. Furthermore, there are indefinite ways to deform one image to
another and thus, no ground truth actually exists. That is why unsupervised
learning is normally being used for these kind of projects, since supervised mod-
els would only mimic the behavior of the classical algorithm, i.e. copying its
problems and uncertainties.

Unsupervised learning detects patterns on its own, and thus might be able
to outperform existing solutions [4,55].

Several architectures are being used and tested [25]. First approaches relied
on typical U-Nets [4] and newer publications are looking into the potential of
GANs [82] to either generate the morphed image directly or “just” the deforma-
tion vector field.

6 Conclusion

As shown on several examples from the image guided radiation therapy field we
see enormous potential of data driven methods to enhance or overcome state
of the art algorithms. This can be observed in various stages of the imaging
pipeline. Notably, the biggest improvements can be observed where learning
based methods are used under consideration of domain knowledge (e.g. x-ray
imaging physics) over pure black-box applications. We rate this as motivation
to further explore problem specific network architectures and loss functions to
obtain solutions that leverage physical or physiological constraints to reduce
the solution space for the training process. Beyond this we see a lot of syner-
gies between the described domain solutions where integrated solutions like e.g.
deformable registration with implicit segmentation or image reconstruction with
implicit deformable registration against prior acquisitions could be future devel-
opments. In conclusion we sense a wide agreement in the scientific community
that deep learning will be the next evolutionary step in the field.

References

1. Adamson, P.M., Arrate, F., Jordan, P.: Evaluation of abdominal autosegmentation
versus inter-observer variability on a high-speed ring gantry CBCT system. In:
AAPM Annual Meeting, San Antonio, TX (2019)

2. Andersen, A., Kak, A.: Simultaneous algebraic reconstruction technique (SART):
a superior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94
(1984)

3. Bae, K.T., Giger, M.L., Chen, C.T., Kahn Jr., C.E.: Automatic segmentation of
liver structure in CT images (1993)

4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph:
a learning framework for deformable medical image registration. IEEE Trans. Med.
Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/tmi.2019.2897538

https://doi.org/10.1109/tmi.2019.2897538


18 P. Paysan et al.

5. Benedict, S.H., et al.: Stereotactic body radiation therapy: the report of AAPM
Task Group 101. Med. Phys. 37(8), 4078–4101 (2010)

6. Bertholet, J., Knopf, A., et al.: Real-time intrafraction motion monitoring in exter-
nal beam radiotherapy. Phys. Med. Biol. 64(15), 15TR01 (2019)

7. Brehm, M., Paysan, P., Oelhafen, M., Kachelrieß, M.: Artifact-resistant motion
estimation with a patient-specific artifact model for motion-compensated cone-
beam CT. Med. Phys. 40(10), 101913 (2013)

8. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv.
24(4), 325–376 (1992)

9. Cai, J., Xia, Y., Yang, D., Xu, D., Yang, L., Roth, H.: End-to-end adversarial
shape learning for abdomen organ deep segmentation. In: Suk, H.-I., Liu, M., Yan,
P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 124–132. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32692-0 15

10. Chen, B., Xiang, K., Gong, Z., Wang, J., Tan, S.: Statistical iterative CBCT recon-
struction based on neural network. IEEE Trans. Med. Imaging 37(6), 1511–1521
(2018)

11. Chen, G., et al.: AirNet: fused analytical and iterative reconstruction with deep
neural network regularization for sparse-data CT. Med. Phys. (2020). https://doi.
org/10.1002/mp.14170

12. Chen, G., Zhao, Y., Huang, Q., Gao, H.: 4D-AirNet: a temporally-resolved CBCT
slice reconstruction method synergizing analytical and iterative method with deep
learning. Phys. Med. Biol. (2020). https://doi.org/10.1088/1361-6560/ab9f60

13. Chun, I., Huang, Z., Lim, H., Fessler, J.: Momentum-Net: fast and convergent
iterative neural network for inverse problems. arXiv preprint arXiv:1907.11818,
July 2019

14. Czeizler, E., et al.: Using federated data sources and Varian Learning Portal frame-
work to train a neural network model for automatic organ segmentation. Physica
Medica 72, 39–45 (2020)

15. Dahele, M., Verbakel, W.: Treatment planning, intrafraction monitoring and
delivery: linear accelerator-based stereotactic spine radiotherapy. Stereotact Body
Radiat Ther Spinal Metastasis Future Medicine Ltd., pp. 37–55 (2014)

16. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum,
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Abstract. Image representations learned by deep convolutional neural
networks (CNNs) have greatly improved the performance of content-
based image retrieval systems in recent years. Query-by-example is the
most popular strategy to represent a user’s search intention in content-
based image and video retrieval scenarios. Nevertheless, simply present-
ing an image as a query is often insufficient to express a user’s intention,
due to ambiguities in the query image. To better meet a user’s search
intention, a novel intentional image similarity search approach is pro-
posed, consisting of a scheme for specifying a user’s intention for a query
image, a plugin mechanism to support more fine-grained neural network
models for specific search, and a hybrid feature method based on CNN
and handcrafted features. Furthermore, a novel analysis technique for
deep similarity networks is introduced for the purpose of finding relevant
image regions. The proposed approach is evaluated qualitatively on video
recordings of the German Broadcasting Archive.

Keywords: Intentional gap · Image similarity search · Hybrid feature
method

1 Introduction

A fundamental problem of content-based image retrieval is to overcome the dis-
crepancy between the information that can be extracted from visual data and
the human interpretation of the same data. In the literature, this discrepancy is
also known as the semantic gap [18]. Using state-of-the-art convolutional neural
network (CNN) features has brought us close to the goal of bridging this gap.
Image representations learned by deep neural networks can greatly improve the
performance of content-based image retrieval systems. They are less dependent
on pixel intensities and are better suited for searching semantic content.

In addition to the semantic gap, there is an intentional gap that describes
the coincidence between a query and a user’s intention. Query-by-example is the
most popular, most intuitive, and most expressive strategy to describe a user’s
search intention in content-based image and video retrieval scenarios. Never-
theless, simply presenting an image as a query is often insufficient to express
a user’s intention. For example, the pictures in Fig. 1 show query images pre-
sented to the database of the German Broadcasting Archive, i.e., an institution
c© Springer Nature Switzerland AG 2020
F.-P. Schilling and T. Stadelmann (Eds.): ANNPR 2020, LNAI 12294, pp. 23–35, 2020.
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that maintains the cultural heritage of the television broadcasts of the former
German Democratic Republic (GDR). In all presented query images, the user’s
intention is not clear:

Fig. 1. Query images.

In Fig. 1(a), possible search intentions are:

– Crowd
– Person
– Katarina Witt
– Autograph signing session
– Katarina Witt signing autographs
– Katarina Witt in figure skating dress

In Fig. 1(b), possible search intentions are:

– Simson scooter
– Is the woman important?
– Is the layout important (woman sitting on a scooter at a parking area with

Trabant cars in front of a house)?

In Fig. 1(c), possible search intentions are:

– Motorbike
– Vintage Motorbike
– Moped
– Simson moped
– Simson S51 moped
– Black Simson S51 moped
– Motorbike on meadow with trees in the background

The mismatch between a user’s intention and a query image can be attributed
to the following factors: region of interest, layout, and specificity. It is often
unclear whether the user is interested in only part of the image or in the whole



Intentional Image Similarity Search 25

scene. Furthermore, there is the question of whether the layout is important.
For example, is it important in query image Fig. 1(b) that the woman is sitting
on a scooter in front of parking cars with a house in the background? Finally,
the specificity of the query is an important factor to capture the user’s search
intention. It ranges from the general concept of the query image (e.g., motorbike),
to the specific object, person, or scene (e.g., Simson S51), to a duplicate of the
image. In this context, color, texture, and shape are further attributes to specify
a user’s intention. In all these cases, more user interactions are necessary to
specify a user’s intention.

In this paper, a novel similarity search approach is presented that uses inten-
tional constraints to capture regions of interest, layout, and specificity. These
constraints are defined by user interactions using region labeling and checkboxes
for layout and specificity. Regarding specificity, we have to distinguish between
the hierarchy of classes (e.g., car −→ Volkswagen −→ Golf) and the attributes like
color, texture, and shape. The best solution for specific classes are fine-grained
models trained for subcategories of e.g., persons, cars, dogs, or flowers. How-
ever, this solution is not really scalable, since there are thousands of classes that
would need to be mapped with fine granularity. Therefore, we realized a hybrid
approach where CNN features are combined with handcrafted features (e.g.,
color moments and SIFT descriptors) to handle specificity constraints, while
fine-grained similarity modules can be plugged in for the most important classes
such as, e.g., persons.

The hybrid approach operates in two stages. In the first stage, CNN features
are used to find semantically similar content. These images are re-ranked in the
second stage using handcrafted features. These features are extracted from image
regions that are responsible for the high semantic similarity score between the
query and the result image. The responsible image regions (called heat maps)
are calculated using a novel technique for visualizing deep similarity networks.
These regions are also used to realize the layout constraint by comparing the
heat maps.

The contributions of the paper are as follows:

– A new query specification scheme is presented that allows to clarify the search
intention of the user presenting the query image.

– A hybrid method using CNN and handcrafted features is presented to realize
intentional image similarity search.

– A novel analysis technique for deep similarity networks is introduced to find
the relevant image regions.

The paper is organized as follows. Section 2 discusses related work. Section 3
describes the data of the German Broadcasting Archive to which the intentional
content-based image similarity approach is applied. In Sect. 4, we present the
proposed novel intentional image similarity search approach, including the query
specification scheme, the plugin mechanism for fine-grained models, as well as
the relevant region extraction approach. Experimental results are presented in
Sect. 5. Section 6 concludes the paper and outlines areas for future work.
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2 Related Work

In multimedia search, Kofler et al. [11] distinguish between the topical dimension
(“what” is the user searching for) and the intent dimension (“why” is the user
searching). While the terms “intent” and “intention” are used synonymously in
the literature, Kofler et al. [11] distinguish between the “intent” as the “imme-
diate reason, purpose, or goal behind a user’s information need” [9] and the
“intention” which describes the information need as a whole. In the case of
content-based image similarity search, we consider the intention gap as the coin-
cidence between the query image and the user’s intention. This is often reflected
in the ambiguity of the query image. The term “intent” goes deeper and con-
siders, for example, conceptual models of user intent which are built based on
click-through data of user sessions, query log analysis, or user profiles exploit-
ing long-term search behaviors. While there is a wide range of intent-aware
approaches in the field of text and multimedia information retrieval [5,6,11]
that are mainly based on keyword or text queries, less research effort has been
devoted to intentional image similarity search.

In this paper, we focus on content-based image retrieval with query-by-
example. Query-by-content based on feature representations learned by deep
CNNs have greatly increased the performance of content-based image retrieval
systems [19], since they are less dependent on pixel intensities and better repre-
sent the semantic content of the images. Thus, they try to bridge the semantic
gap between the data representation and the human interpretation.

In addition to the semantic gap, there is an intentional gap that describes the
coincidence between a query and a user’s intention. In general, the intentional
gap is due to ambiguities in the query image. As already described in Sect. 1, a
search image is often insufficient to express a user’s intention concerning region
of interest, layout, and specificity. The query image, for example, could contain
image regions that are not part of a user’s search intention. Furthermore, the
specificity of the query image has to be clarified.

Relevance feedback is a commonly used technique to narrow down a user’s
search intention. In this scenario, a user interacts with the search engine to eval-
uate an initial retrieval result. The additional relevant and non-relevant labeled
images are used in an iterative process to refine the retrieval results. An overview
of relevance feedback in image retrieval is given by Zhou and Huang [24].

Bian et al. [3] use a query suggestion approach for query-by-example image
search to specify a user’s intention. Given a query image, informative attributes
reflecting visual properties of the query image are suggested to the user as com-
plements to the query. By selecting some suggested attributes in a feedback
session, a user can clarify his or her search intention.

The approach of Guan and Qui [8] learns a user’s intention in an interactive
image retrieval process. Given a query image, the relevant image regions are
inferred both from the query and from multiple relevance feedback images using
local image patch appearance prototypes. These relevant regions are then used
to refine the ranking result.
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Zhang et al. [20] present a semantic concept approach. The authors organize
the semantic concepts into a hierarchy and augment each concept with a set
of related attributes (e.g., round, red, shiny). The queries are mapped onto the
concept hierarchy with attributes, and user feedback is collected to refine the
ranking results.

Other possibilities of specifying the search intention are query expansions
using, for example, multiple query images [1,2], additional keywords, or text
descriptions [10,16].

To the best of our knowledge, there are no deep similarity search approaches
dealing with query image ambiguities.

3 German Broadcasting Archive

Our hybrid feature approach for intentional image similarity search has been
applied to historical video recordings of the German Broadcasting Archive
(DRA). The DRA maintains the cultural heritage of television broadcasts of
the former German Democratic Republic (GDR). It was founded in 1952 as a
charitable foundation and joint institution of the Association of Public Broad-
casting Corporations in the Federal Republic of Germany (ARD).

The archive contains film documents of former GDR television productions
from the first broadcast in 1952 until its cessation in 1991. It includes a total of
around 100,000 broadcasts, such as: contributions and recordings of the daily
news program Aktuelle Kamera; political magazines such as Prisma or Der
schwarze Kanal; broadcaster’s own TV productions including numerous films,
film adaptations and TV series productions such as Polizeiruf 110; entertain-
ment programs (e.g., Ein Kessel Buntes); children’s and youth programs (fairy
tales, Elf 99); as well as advice and sports programs.

The DRA provides access to this valuable collection of scientifically relevant
videos. The uniqueness and importance of the material fosters a large scientific
interest in the video content. Access to the archive is granted to scientific, edu-
cational and cultural institutions, to public service broadcasting companies and,
to a limited extent, to commercial organizations and private persons. The video
footage is often used in film and multimedia productions. Furthermore, there
is a considerable international research interest in GDR and German-German
history. International scientists use the DRA for their research in the fields of
psychology, media, social, political or cultural science.

The DRA is answering a wide range of time-consuming research requests.
However, finding similar images in large multimedia archives is manually infea-
sible. Therefore, the DRA aims to digitize and index the entire video collection
to facilitate search in images and videos. In this context, content-based image
retrieval using query-by-example is a powerful tool to make the valuable infor-
mation in the archive findable.
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4 A Novel Approach to Intentional Image Similarity
Search

In this section, the proposed intentional similarity search approach is presented.
To better meet a user’s search intentions, the approach is based on a plugin mech-
anism for fine-grained similarity search modules and a hybrid approach based
on CNN and handcrafted features. Further query specifications are required to
capture the search intention of a user presenting a query image. The query
specification scheme and the mapping of queries to similarity search modules is
presented in Sect. 4.1. Section 4.2 presents the introduced hybrid approach using
deep CNN and handcrafted features. The plugin mechanism using the example
of similarity search for faces is described in Sect. 4.3.

4.1 Query Specification

To disambiguate a query, a user is offered several options for further specifying
his or her search intention associated with the presented query image.

First, the user is allowed to specify the region of interest to exclude irrelevant
parts of the query image.

Second, the user can choose whether (s)he is looking for a specific concept
(e.g., a VW Golf). This option is available if one of the plugins for fine-grained
search detects the corresponding general concept (e.g., a car).

Third, the user has the possibility to select color, texture, and shape as
additional query conditions to clarify the search intention. The selected features
are automatically extracted from the region of interest and used to refine the
initial ranking results of either the general or the specific deep similarity search
model. The hybrid feature approach is described in the next section.

Fourth, the user can tell the similarity search system that the layout is impor-
tant. The layout is considered by comparing the relevant image regions between
the query and the retrieved images. The relevant region extraction approach is
presented in Sect. 4.2.

Finally, the user can perform a duplicate search. For this purpose, all con-
straints must be satisfied.

Altogether, multiple selected conditions are weighted accordingly in the dis-
tance function at the re-ranking stage.

4.2 Hybrid Feature Method

The proposed hybrid method operates in two stages.
In the first stage, CNN features are used to find semantically similar content.

To be scalable to millions of images, this stage relies on compact representations
of the images for fast computation of image similarity by the Hamming distance.
The deep similarity search approach used in the first stage is described in the
next paragraph.

If color, texture or shape are selected as additional query conditions, the
results of the first stage are re-ranked in the second stage, using handcrafted
features.
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Deep Similarity Search. In our work, we rely on the visual modality and focus
on large-scale semantic similarity search. Since high-dimensional CNN features
are not suitable to efficiently search in very large databases, large-scale simi-
larity search systems focus on binary image codes for compact representations
and fast comparisons rather than full CNN features. Binary codes enable fast
distance computation in the Hamming space. Furthermore, the distance com-
putation complexity is reduced by Multi-Index Hashing [14]. We use a model
that is trained to generate 256 bit binary codes for fast image retrieval. First, a
NASNet [25], pretrained on ImageNet [7], is trained on ImageNet and the Places
205 dataset [23]. Before the final classification layer. A tanh activation layer is
integrated which produces the 256-dimensional codes. Next, the model is trained
for a few epochs with a smaller learning rate.

Handcrafted Features. The definition of similarity ranges from pixel-based
similarity to semantic similarity. The latter corresponds to human understand-
ing. The definition and optimization of similarity functions is subject to current
research [4,12]. In the following, color histograms are proposed to compute the
similarity of color distributions, GIST features [15] are used to measure texture
similarity, and SIFT features [13] are employed for shapes. The handcrafted fea-
tures are extracted from image regions that are responsible for the high semantic
similarity score at the first stage. For this purpose, a new method is introduced to
find these regions, as described in the following paragraph. To compute the sim-
ilarity between the relevant regions of two images, the Euclidean distance of the
normalized feature vectors is calculated. For multiple conditions, the distances
of the corresponding feature vectors are weighted accordingly.

Relevant Region Extraction. To re-rank the retrieval list, we extract relevant
regions by a method similar to Class Activation Maps (CAM) [22]. The idea is
to use the output activations of the query image to detect relevant regions in
images of the retrieval list. The method requires that the last convolutional layer
is followed by a global average pooling layer. Global average pooling outputs the
spatial average of the feature map of the last convolutional layer. Thus, each
output in the final layer is a weighted sum of the pooled vector. CAM can then
be generated by applying the weights corresponding to a specific output class
to weight each feature map of the last convolutional layer. In contrast to CAM,
we use the averaged weights of the 256-dimensional coding layer output of the
query image to weight the final feature maps of the retrieval image.

For an image r in the retrieval list, fr
k (x, y) represents the activation of

unit k in the last convolutional layer at spatial location (x, y). For this unit,
global average pooling of the convolutional layer with depth C results in F r

k =
1
C

∑C
i=1 f

r
k (x, y)i. For each output unit in the subsequent deep hashing layer,

the score is computed as
∑

k w
r
k,sF

r
k , where wr

k is the weight between the output
s and unit k. Likewise, wq

k is obtained a for query image q. As in CAM, the
bias term is ignored. Finally, the activation map used for extracting regions is
obtained by
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∑
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r
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Fig. 2. Heatmaps visualized in retrieval results.

Figure 2 shows a heatmap visualization of the upscaled feature maps for
several retrieval images weighted by the query image.

4.3 Plugin Mechanism

The best solution for specific classes are fine-grained models trained for subcate-
gories, such as faces, car models, bird species or dog breeds. Since this approach
is not scalable to thousands of classes, fine-grained models are only integrated for
the most important and most frequently used query contents. The user-defined
query image regions are analyzed by the search engine to detect classes for which
more fine-grained modules exist. Each module has to provide two components: a
detection component and a component that generates the binary codes from the
image region. In an interactive user session, as described in Sect. 4.1, the user
specifies whether (s)he is searching for the general class or for the automatically
detected specific content.

Each module has its own index. If a module is activated, the general search
index is replaced by the specific index of the fine-grained model from the corre-
sponding submodule.

In the following, the fine-grained module for faces/persons is presented in
more detail. Similar to the general model, the same deep hashing approach, as
described in Sect. 4.2, is used to generate binary codes for large-scale similarity
search. In contrast to the general model, the face module follows a two-stage
approach. In the first stage, the faces are detected using a joint face detection
and alignment approach based on multitask cascaded convolutional networks
[21]. For this purpose, a publicly available implementation is used1. After aligning
the face regions, a deep hashing model is used to generate the binary codes. We
use the pretrained weights of the publicly available FaceNet model [17] trained
on the CASIA-WebFace dataset. We extended the architecture of this model by a
coding layer and fine-tuned it on the same dataset extended by training samples
for 100 persons from the DRA dataset to adjust the model to the keyframes of
the historical video recordings.
1 https://github.com/davidsandberg/facenet/tree/master/src/align.

https://github.com/davidsandberg/facenet/tree/master/src/align
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Fig. 3. Specific retrieval results using the fine-grained face module in comparison to
the general search results.

While in the indexing phase the binary codes for all detected faces of an
image are calculated and fed into the corresponding index, in the search phase
only the largest face within the query image region is used to generate the binary
query code.

5 Experimental Results

The proposed intentional image search approach was evaluated experimentally
on the keyframes of the video recordings of the German Broadcasting Archive.
While the currently digitized index contains more than 10 million keyframes,
the retrieval results had to be restricted to 400,000 keyframes due to associated
rights of use of the keyframes.

We evaluate our approach qualitatively for two use cases below.
In the first use case, we consider the plugin mechanism and investigate the

impact of the face/person similarity module. For this purpose, a face detection
and recognition module was integrated into the similarity search system. This
allows the user to specify whether general concepts are important, or if (s)he is
interested in a specific concept - a person’s face in this case.

The experiments were performed on two indices, one for general semantic
similarity, another one for face similarity. The general index contains hash codes
for all 400,000 keyframes, while the person recognition based index contains
about 300,000 image codes, each one representing a detected face.
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Fig. 4. Retrieval of deep similarity search (query images in top row).

Figure 3 shows the top retrieval results for query images for both the general
search and the specific search, which involves a subsequent face detection and
recognition step. The detection component of the face plugin reliably detected
the faces both in the query and database images. While the general search results
contains similar images that contain persons with the same shot size, the specific
search delivers the same person in different scenarios with high accuracy.

In the second use case, we evaluated the hybrid feature approach by the
example of color histograms. If a user decides that color is an important prop-
erty in the query image, the retrieval list is re-ranked, as described in Sect. 4.2.
Figure 4 shows the retrieval for some query images. Figure 5 shows the same
retrieval list when color is of interest to the user, re-ranked according to the
similarity of color histograms extracted from the relevant regions. This example
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shows how retrieval results of CNNs trained on (high level) semantic concepts
can be refined by re-ranking them according to selected low level features.

In both cases, the additional specification of the query leads to results that
reflect a user’s intention.

Fig. 5. Retrieval of deep similarity search, re-ranked by local color histograms (query
images in top row).

6 Conclusion

In this paper, a novel intentional image similarity search approach was pro-
posed to better meet a user’s search intention. For this purpose, a new scheme
for specifying a user’s intention with respect to a query image was introduced.
The best solution for specific classes are fine-grained models trained for sub-
categories, such as faces. Since this approach is not scalable to thousands of
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classes, a plugin mechanism was integrated to support specific search for the
most important concepts. Furthermore, a hybrid feature method based on CNN
and handcrafted features was used to consider color, texture, and shape. In this
context, a novel analysis method for deep similarity networks was presented for
the purpose of finding relevant image regions. Finally, the proposed system was
evaluated qualitatively on video recordings of the German Broadcasting Archive,
showing promising results.

There are several areas for future work. First, runtime improvements are nec-
essary for the relevant region and handcrafted feature extraction stages. Second,
a user could be interested in searching for multiple regions in the query image,
e.g., for two specific persons. For this purpose, the approach has to be extended
by region specific options. Finally, further combinations of CNN and handcrafted
features should be evaluated to satisfy a user’s intentions.

Acknowledgement. This work is financially supported by the Deutsche Forschungs-
gemeinschaft (DFG, FR 791/15-1).
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Abstract. The paper proposes a novel technique for representing tem-
plates and instances of concept classes. A template representation refers
to the generic representation that captures the characteristics of an entire
class. The proposed technique uses end-to-end deep learning to learn
structured and composable representations from input images and dis-
crete labels. The obtained representations are based on distance esti-
mates between the distributions given by the class label and those given
by contextual information, which are modeled as environments. We prove
that the representations have a clear structure allowing to decompose the
representation into factors that represent classes and environments. We
evaluate our novel technique on classification and retrieval tasks involv-
ing different modalities (visual and language data).

Keywords: Composable representations · Deep learning · Multimodal

1 Introduction

We propose a novel technique for representing templates and instances of con-
cept classes that is agnostic with regard to the underlying deep learning model.
Starting from raw input images, representations are learned in a classification
task where the cross-entropy classification layer is replaced by a fully connected
layer that is used to estimate a bounded approximation of the distance between
each class distribution and a set of contextual distributions that we call ‘envi-
ronments’. By defining randomized environments, the goal is to capture com-
mon sense knowledge about how classes relate to a range of differentiating con-
texts, and to increase the probability of encountering distinctive diagnostic fea-
tures. This idea loosely resembles how human long-term memory might achieve
retrieval [7] as well as how contextual knowledge is used for semantic encoding
[6]. Our experiments confirm the value of such an approach.

In this paper, classes correspond to (visual) object labels, and environments
correspond to combinations of contextual labels given by either object labels or
image caption keywords. Representations for individual inputs, which we call
‘instance representations’, form a 2D matrix with rows corresponding to classes
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Fig. 1. The last layer of a convolutional neural network is replaced with fully-connected
layers that map to nc ×ne outputs fi,j that are used to create instance representations
that are interpretable along contextual dimensions, which we call ‘environments’. By
computing the cosine similarity, rows are compared to corresponding class representa-
tions, which we refer to as ‘templates’.

and columns corresponding to environments, where each element is an indication
of how much the instance resembles the corresponding class versus environment.
The parameters for each environment are defined once at start by uniformly
selecting a randomly chosen number of labels from the power set of all available
contextual labels. The class representation, which we refer to as ‘template’, has
the form of a template vector. It contains the average distance estimates between
the distribution of a class and the distributions of the respective environments.
By computing the cosine similarity between the instance representation and all
templates, class membership can be determined efficiently (Fig. 1).

Template and instance representations are interpretable as they have a fixed
structure comprised of distance estimates. This structure is reminiscent of tra-
ditional language processing matrix representations and enables operations that
operate along matrix dimensions. We demonstrate this with a Singular Value
Decomposition (SVD) which yields components that determine the values along
the rows (classes) and columns (environments) respectively. Those components
can then be altered to modify the information content, upon which a new rep-
resentation can be reconstructed. The proposed representations are evaluated in
four settings: (1) Multi-label image classification, i.e., object recognition with
multiple objects per image; (2) Image retrieval where we query images that look
like existing images but contain altered class labels; (3) Single-label image clas-
sification on pre-trained instance representations for a previously unseen label;
(4) Rank estimation with regard to compression of the representations.

Contributions. (1) We propose a new deep learning technique to create struc-
tured representations from images, entity classes and their contextual informa-
tion (environments) based on distance estimates. (2) This leads to template
representations that generalize well, as successfully evaluated in a classification
task. (3) The obtained representations are interpretable as distances between a
class and its environment. They are composable in the sense that they can be
modified to reflect different class membership as shown in a retrieval task.
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2 Background

We shortly discuss useful background related to different aspects of our research.

Representing Entities with Respect to Context. In language applications,
structured matrices (e.g, document-term matrices) have been used for a long
time. Such matrices can be decomposed with SVD or non-negative matrix fac-
torization. Low-rank approximations are found with methods like latent semantic
indexing. Typical applications are clustering, classification, retrieval, etc. with
the benefit that outcomes can usually be interpreted with respect to the con-
textual information. Contrary to our work, earlier methods build representa-
tions purely from labels and don’t take deep neural network-based features into
account. More recently [11] create an unsupervised sentence representation where
each entity is a probability distribution based on co-occurrence of words.

Distances to Represent Features. The Earth Mover’s Distance (EMD) also
known as Wasserstein distance, is a useful metric based on the optimal transport
problem to measure the distance between distributions. [3] use a similar idea to
define the Word Mover’s Distance (WMD) that measures the minimal amount of
effort to move Word2Vec-based word embeddings from one document to another.
The authors use a matrix representation that expresses the distance between
words in respective documents. They note the structure is interpretable and
performs well on text-based classification tasks.

Random Features. The Word Mover’s Embedding [14] is an unsupervised
feature representation for documents, created by concatenating WMD estimates
that are computed with respect to arbitrarily chosen feature maps. The authors
calculate an approximation of the distance between a pair of documents with
the use of a kernel over the feature map. The building blocks of the feature map
are documents built from an arbitrary combination of words. This idea is based
on Random Features approximation [9] that suggests that a randomized feature
map is useful for approximating a shift-invariant kernel.

Our work can be viewed as a combination of the above ideas: we use dis-
tance estimates to create interpretable, structured representations of entities
with respect to their contexts. The contextual dimension consists of features
that are built from an arbitrary combination of discrete labels. Our work most
importantly differs in the following manners: (1) We use end-to-end deep neural
network training to include rich image features when building representations;
(2) Information from different modalities (visual and language) can be combined.

3 CoDiR: Method

We first define some notions that are useful to understand the method, which
we name Composable Distance-based Representation learning (CoDiR).
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Setup and Notations. Given is a dataset with data samples x ∼ pdata, with
non-exclusive class labels ci, i ∈ {1, ..., nc} which in this work are visual object
labels (e.g., dog, ball, ...). Image instances s are fed through a (convolutional)
neural network N . The outputs of N will serve to build templates Ti,: ∈ R

ne

and instance representations D ∈ R
nc×ne with ne a hyperparameter denoting

the amount of environments. Each environment will be defined with the use of
discrete environment labels lk, k ∈ {1, ..., nl}, for which we experiment with two
types: (1) the same visual object labels as used for the class labels (such that
nl = nc) and (2) image caption keywords from the set of the nl most common
nouns, adjectives or verbs in the sentence descriptions in the dataset. We will
refer to the first as ‘CoDiR (class)’ and the latter as ‘CoDiR (capt)’.

1ci is shorthand for the indicator function 1ci(x) = 1 if x ∈ Ci, 0 otherwise,
with Ci the set of images with label ci. Similarly we denote 1lk . Each element Di,j

is a distance estimate between distributions pci and pej , where pci is shorthand
for p(x = x, x ∈ Ci). Informally, pci is the joint distribution modeling the data
distribution and class membership ci. To obtain pej , several steps are performed
before training. First, hyperparameter R is set, giving the maximum amount of
labels per environment. For the j-th environment, we then (1) sample the actual
amount of labels rj ∼ U [1, R] ∈ N; (2) sample the labels l(j)m , with m ∈ {1, ..., rj},
uniformly without replacement from the set of all discrete environment labels
lk, k ∈ {1, ..., nl}. Now Ej , the set of images for environment ej , is given by
Ej = ∪rj

m=1L
(j)
m with L

(j)
m the set of images with label l(j)m . Thus, similarly to

pci , we have pej = p(x = x, x ∈ Ej). Note that by sampling a random amount
of labels per environment, as inspired by [14], we ensure diversity in the type of
composition of environments, with some holding many labels and some few.

Contextual Distance. We propose to represent each image as a 2D feature
map that relates distributions of classes to environments. A suitable metric
should be able to deal with neural network training as well as potentially over-
lapping distributions. A natural candidate is a Wasserstein-based distance func-
tion [1]. A key advantage is that the critic can be encouraged to maximize the
distance between two distributions, whereas metrics based on Kullback-Leibler
(KL) divergence are not well defined if the distributions have a negligible inter-
section [1]. In comparison to other neural network-based distance metrics, the
Fisher IPM provides particularly stable estimates and has the advantage that
any neural network can be used as f as long as the last layer is a linear, dense
layer [5]. The Fisher GAN formulation bounds F , the set of measurable, symmet-
ric and bounded real valued functions by defining a data dependent constraint
on its second order moments. The IPM is given by:

dFF (pej , pci) = sup
fi,j∈F

E
x∼pej

[fi,j(x)] − E
x∼pci

[fi,j(x)]
√

1/2Ex∼pej
f2
i,j(x) + 1/2Ex∼pci

f2
i,j(x)

(1)

In practice, the Fisher IPM is estimated with neural network training where
the numerator in Eq. 1 is maximized while the denominator is expressed as a con-
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straint, enforced with a Lagrange multiplier. While the Fisher IPM is an estimate
of the chi-squared distance, the numerator can be viewed as a bounded estimate
of the inter-class distance, closely related to the Wasserstein distance [5]. From
now on, we denote this approximation of the inter-class distance as the ‘distance’.
During our training, critics fi,j are trained from input images to maximize the
Fisher IPM for distributions pci and pej , ∀i ∈ {1, ..., nc},∀j ∈ {1, ..., ne}. The
numerator then gives the distance between pci and pej . We denote T ∈ R

nc×ne ,
with Ti,j = E

x∼pej,train

[fi,j(x)]− E
x∼pci,train

[fi,j(x)], i.e., the evaluation of the esti-

mated distances over the training set. Intuitively, one can see why a matrix T
with co-occurrence data contains useful information. A subset of images con-
taining ‘cats’, for example, will more closely resemble a subset containing ‘dogs’
and ‘fur’ than one containing ‘forks’ and ‘tables’.

Template and Instance Representations. As the template representation
for class ci, we simply use the corresponding row of the learned distance matrix:
Ti,:. Each element Ti,j gives an average distance estimate for how a class ci relates
to environment ej , where smaller values indicate that class and environment are
similar or even (partially) overlap. For the instance representation for an input
s we then propose to use D ∈ R

nc×ne with elements given by Eq. 2:

D
(s)
i,j = E

x∼pej,train

[fi,j(x)] − fi,j(s) (2)

where fi,j(s) is simply the output of critic fi,j for the instance s. The result is
that for an input s with class label ci, D

(s)
i,: is correlated to Ti,: as its distance

estimates with respect to all different environments should be similar. Therefore,
the cosine similarity between vector D

(s)
i,: and the template Ti,: will be large for

input samples from class i, and small otherwise.
Such templates can be evaluated, for example, in multi-label classification

tasks (see Sect. 4). Finding the classes for an image is then simply calculated
by computing whether ∀ci, cos(D(s)

i,: ,Ti,:) > tci with tci a threshold (the level
of which is determined during training). From here on we will use a shorthand
notation D(s) ⊂ ci to denote cos(D(s)

i,: ,Ti,:) > tci , and D(s) �⊂ ci otherwise.

Implementation. Training nc × ne critics is not feasible in practice, so we
pass input images through a common neural network for which the classification
layer is replaced by nc × ne single layer neural networks, the outputs of which
constitute fi,j (see Fig. 1). During training, any given mini-batch will contain
inputs with many different ci and ej . To maximize Eq. 1 efficiently, instead of
feeding a separate batch for the samples of x ∼ pci and x ∼ pej , we use the
same mini-batch. Additionally, instead of directly sampling x ∼ pci we multiply
each output fi,j with a mask M c

i,j where M c
i,j = 1ci . Similarly, for x ∼ pej

we multiply each output fi,j with a mask Me
i,j where Me

i,j =
∑rj

m=1 1l
(j)
m

. The
result is that instances then are weighted according to their label prevalence as
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Algorithm 1. Algorithm of the training process. For matrices and tensors, ×
refers to matrix multiplication and ∗ refers to element-wise multiplication.

Inputs: images s, class labels c, environment labels l
∀j ∈ {1, ..., ne}: rj ∼ U [1, R] ∈ N ∧ ∀m ∈ {1, ..., rj}, l

(j)
m ∼ U [1, nl]

Create V ∈ N
nl×ne which has value 1 for each uniformly selected label, 0 otherwise.

Init λ = 0 ∈ R
nc×ne ∧ Init weights in neural network N

while Training do
Sample a mini-batch b, with batch size nb, containing images s and binary class
labels Cb ∈ N

nb×nc and binary environment labels Lb ∈ N
nb×nl .

Create masks
Expand Cb into M c ∈ N

nb×nc×ne , s.t. M c
k,i,: = 1ci(sk) for the k-th sample sk.

Multiply Lb and V , then expand the result into M e ∈ N
nb×nc×ne , s.t. M e

k,:,j =∑rj
m=1 1l

(j)
m

(sk) for the k-th sample sk.

Calculate the FISHER GAN loss
Propagate b through N to obtain Of ∈ R

nc×ne containing all outputs fi,j .
Apply masks to N ’s outputs: OE = Of ∗ M e and OC = Of ∗ M c.
EfE = mean(OE , dim = 0)
EfEs = mean(OE ∗ OE , dim = 0)
EfC = mean(OC , dim = 0)
EfCs = mean(OC ∗ OC , dim = 0)
constraint = 1 − (0.5 ∗ EfEs + 0.5 ∗ EfCs)
Minimize loss = −sum(EfE − EfC + λ ∗ constraint − ρ/2 ∗ constraint2)

end while

required. From these quantities, the Fisher IPM can be calculated and optimized.
Algorithm 1 explains all the above in detail.1 When comparing to similar neural
network-based methods, the last layer imposes a slightly larger memory footprint
(O(n2) vs O(n)) but training time is comparable as they have the same amount
of layers. After training completes we perform one additional pass through the
training set where we use 2/3rd of the samples to calculate the templates and
the remaining 1/3rd to set the thresholds for classification.2

(De-)composing Representations. As the CoDiR representations have a
clear structure, a Singular Value Decomposition of D: D = USV can be per-
formed, such that the rows of U and the columns of V can be interpreted as the
corresponding factors as contributed by the ci and ej respectively. This leads
to two applications: (1) Composition: by modifying the elements of U , one can
easily obtain Ũ with modified information content. By building a new repre-
sentation D̃ from Ũ , S and V , one thus obtains a similar representation to
the original but with modified class membership. This will be further explained
in this section. (2) Compression: The spectral norm for instance representa-
tions is large with a non-flat spectrum. One can thus compress the representa-
tions substantially by retaining only the first k eigenvectors of U and V , thus

1 Implementation code can be found at https://github.com/GR4HAM/CoDiR.
2 All models are trained on a single 12 Gb gpu.

https://github.com/GR4HAM/CoDiR
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creating representations in a lower k dimensional space (rank k) without sig-
nificant loss of classification accuracy. If k = 1, the new representations are
(91+300)/(91∗300) = 1.4% the size of the original representations. We call this
method C-CoDiR(k).

Let us consider in detail how to achieve composition. To keep things simple,
we only discuss the case for ‘CoDiR (capt)’. Given an image s for which D(s) ⊂
c+ and D(s) �⊂ c−. The goal is now to modify D(s) such that it represents an
image s̃ for which D(s̃) �⊂ c+ and D(s̃) ⊂ c− while preserving the contextual
information in the environments of D(s). As an example, for a D(s) of an image
where D(s) ⊂ cdog and the discrete labels from which the environments are built
indicate labels such as playing, ball and grass. The goal would be to modify the
representation into D(s̃) (such that, for example, D(s̃) ⊂ ccat and D(s̃) �⊂ cdog)
and to not modify the information in the environments.

To achieve this, consider that by increasing the value of Uc+,:, one can
increase the distance estimate with respect to class c+, thus expressing that
D(s) �⊂ c+. Practically, one can set the values of Ũc+,: to the mean of all rows
in U corresponding to the classes c̄ for which D(s) �⊂ c̄. The opposite can be
done for class c−, i.e., one can decrease the value of Uc−,: such that D(s̃) ⊂ c−.
To set the values of Ũc−,:, one can perform a SVD on the matrix composed
of all nc template representations T , thus obtaining UT ST VT . As the tem-
plates by definition contain estimated distances for samples of all classes, it is
then easy to see that by setting Ũc−,: = UTc−,: we express that D(s̃) ⊂ c− as
desired. A valid representation can then be reconstructed with the outer product
D(s̃) =

∑
k

σkŨ:,k ⊗V �
k,: where σk are the eigenvalues of D(s). In the next section

this is illustrated by retrieving images after modifying the representations.

4 Experiments

We show how CoDiR compares to a (binary) cross-entropy baseline for multi-
label image classification. Additionally, CoDiR’s qualities related to (de)composi-
tions, compression and rank are examined.

4.1 Setup

The experiments are performed on the COCO dataset [4] which contains multiple
labels and descriptive captions for each image. We use the 2014 train/val splits of
this dataset as these sets contain the necessary labels for our experiment, where
we split the validation set into two equal, arbitrary parts to have a validation
and test set for the classification task. We set nc = 91, i.e., we use all available
91 class labels (which includes 11 supercategories that contain other labels, e.g.,
‘animal’ is the supercategory for ‘zebra’ and ‘cat’). An image can contain more
than one class label. To construct environments we use either the class labels,
CoDiR (class), or the captions, CoDiR (capt). For the latter, a vocabulary is
built of the nl most frequently occurring adjectives, nouns and verbs. For each
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Table 1. F1 scores, precision (PREC) and recall (REC) for different models for the
multi-label classification task. σ is the standard deviation of the F1 score over three
runs. All results are the average of three runs.

MODEL METHOD ne nl R F1 PREC REC σ

ResNet-18 BXENT (single) − − − 0.566 0.579 0.614 3.6e−3

ResNet-18 CoDiR (class) 300 91 40 0.601 0.650 0.613 8.0e−3

ResNet-101 BXENT (single) − − − 0.570 0.582 0.623 1.3e−2

ResNet-101 CoDiR (class) 300 91 40 0.627 0.664 0.648 2.5e−3

Inception-v3 BXENT (single) − − − 0.638 0.663 0.669 5.4e−3

Inception-v3 CoDiR (class) 300 91 40 0.617 0.648 0.646 4.7e−3

ResNet-18 BXENT (joint) − 300 − 0.611 0.631 0.654 1.1e−3

ResNet-18 BXENT (joint) − 1000 − 0.614 0.637 0.653 9.3e−3

ResNet-18 CoDiR (capt) 300 300 40 0.629 0.680 0.641 2.7e−3

ResNet-18 CoDiR (capt) 1000 1000 100 0.638 0.686 0.651 1.9e−3

ResNet-101 BXENT (joint) − 300 − 0.598 0.619 0.640 1.1e−2

ResNet-101 BXENT (joint) − 1000 − 0.592 0.611 0.638 7.0e−3

ResNet-101 CoDiR (capt) 300 300 40 0.645 0.696 0.655 2.8e−2

ResNet-101 CoDiR (capt) 1000 1000 100 0.657 0.702 0.666 1.3e−2

Inception-v3 BXENT (joint) − 300 − 0.644 0.671 0.675 1.5e−2

Inception-v3 BXENT (joint) − 1000 − 0.63 0.655 0.663 3.0e−2

Inception-v3 CoDiR (capt) 300 300 40 0.660 0.699 0.675 1.9e−3

Inception-v3 CoDiR (capt) 1000 1000 100 0.661 0.700 0.676 6.5e−3

image, each of the nl labels is then assigned if the corresponding vocabulary word
occurs in any of the captions. For the retrieval experiment we select a set of 400
images from the test set and construct their queries.3 All images are randomly
cropped and rescaled to 224 × 224 pixels. We use three types of recent state-of-
the-art classification models to compare performance: ResNet-18, ResNet-101 [2]
and Inception-v3 [13]. For all runs, an Adam optimizer is used with learning rate
5.e−3. ρ for the Fisher IPM loss is set to 1e−6. Parameters are found empirically
based on performance on the validation set.

4.2 Results

Multi-label Image Classification. In this experiment the objects in the image
are recognized. For each experiment images are fed through a neural network
where the only difference between the baseline and our approach is the last layer.
For the baseline, which we call ‘BXENT’, the classification model is trained with
a binary cross-entropy loss over the outputs and optimal decision thresholds are

3 All dataset splits and queries available at https://github.com/GR4HAM/CoDiR.

https://github.com/GR4HAM/CoDiR
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selected based on the validation set F1 score. For CoDiR, classification is per-
formed on the learned representations as explained in Sect. 3. We then conduct
two types of experiments: (1) BXENT (single) vs CoDiR (class): An exper-
iment where only class labels are used. For BXENT (single), classification is
performed on the output with dimension nc. For CoDiR (class), environments
are built with class labels, such that nl = nc. (2) BXENT (joint) vs CoDiR
(capt): An experiment where nl additional contextual labels from image cap-
tions are used. The total amount of labels is nc + nl. For BXENT (joint) this
means joint classification is performed on all nc +nl outputs. For CoDiR (capt),
there are nc classes whereas environments are built with the selected nl caption
words. For all models, scores are computed over the nc class labels.

With the same underlying architecture, Table 1 shows that the CoDiR
method compares favorably to the baselines in terms of F1 score.4 When adding
more detailed contextual information in the environments, as is the case for
CoDiR (capt), our model outperforms the baseline in all cases.5

The performance of CoDiR depends on the parameters ne and R. To measure
this influence the multi-label classification task is performed for different ne

values. Increasing ne or the amount of environments leads in general to better
performance, although it plateaus after a certain level. For R, the max amount of
labels per environment, an optimal value can also be found empirically between 0
and nl. The reason is that combining a large amount of labels in any environment
creates a unique subset to compare samples with. When R is too large, however,
subsets with unique features are no longer created and performance deteriorates.
Also, even when ne and R are small, the outcome is not sensitive with regard to
the choice of environments, suggesting that the amount and diversity are more
important than the composition of the environments.

Retrieval. The experiments here are designed to show interpretability, com-
posability and compressibility of the CoDiR representations. All models and
baselines in these sections are pre-trained on the classification task above. We
perform two types of retrieval experiments: (1) NN: the most similar sample to
a reference sample is retrieved; (2) M-NN: a sample is retrieved with modified
class membership while contextual information in the environments is retained.
Specifically: “Given an input sr that belongs to class c+ but not c−, retrieve the
instance in the dataset that is most similar to sr that belongs to c− and not
c+”, where c+ and c− are class labels (see Fig. 2). We will show that CoDiR is
well suited for such a task, as its structure can be exploited to create modified
representations D(s̄r) through decomposition as explained in Sect. 3.

This task is evaluated as shown in Table 2a where the goal is to achieve a
good combination of M-NN PREC and F1% (for the latter, higher percentages
are better). We use the highly structured sigmoid outputs of the BXENT (single)
and BXENT (joint) models as baselines, denoted as SEM (single) and SEM
(joint) respectively. With SEM (joint) it is possible to directly modify class

4 Multi-label scores as defined by [12].
5 For reference: a k-Nearest Neighbors (k = 3) on pre-trained ImageNet features of a

ResNet-18 achieves a F1 of 0.221.
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Table 2. Methods are used in combination with three different base models: ResNet-
18/ResNet-101/Inception-v3. All results are the average of three runs.

Method NN M-NN
F1 PREC F1%

SEM(single) .64/.66/.70 .53/.55/.55 93/87/89
SEM(joint) .71/.70/.73 .29/.28/.31 97/100/96
CNN(joint) .71/.70/.70 .37/.26/.33 92/90/92
CM .72/.74/.74 .19/.15/.18 100/100/100
CoDiR .70/.72/.72 .30/.30/.27 97/97/95
C-CoDiR(5) .70/.72/.72 .30/.29/.26 97/94/93

(a) For the NN and M-NN retrieval, the F1 score
of class labels and the precision (PREC) of the
modified labels are shown for the first retrieved
sample. The proportion of the F1 score of M-NN
over NN for the caption words is shown as F1%.

Method F1
SEM (single) 0.00/0.00/0.00
CoDiR (class) 0.10/0.06/0.07
C-CoDiR(5)(class) 0.06/0.08/0.09
SEM (joint) 0.00/0.10/0.00
CoDiR (capt) 0.08/0.15/0.20
C-CoDiR(5)(capt) 0.10/0.14/0.19

(b) F1 score for a simple logistic re-
gression on pre-trained representa-
tions to classify a previously unseen
label (”panting dogs”). For the last
three models, nl = 300.

Fig. 2. Example of a retrieval result for both NN and M-NN. For NN, based on the
representation D(sr), the most similar instance is retrieved. For M-NN D(sr) is modified
into D(s̄r) before retrieving the most similar instance.

labels while maintaining all other information. It is thus a ‘best-case scenario’-
baseline for which one can strive, as it combines a good M-NN precision and
F1% score. SEM (single) on the other hand only contains class information and
thus presents a best-case scenario for the M-NN precision score yet a worst-
case scenario for the F1% score. Additionally we compare with a simple baseline
consisting of CNN features from the penultimate layer of the BXENT (joint)
models with nl = 300. We also use those features in a Correlation Matching
(CM) baseline, that combines different modalities (CNN features and word
caption labels) into the same representation space [10]. The representations of
these baseline models cannot be composed directly. In order to compare them
to the ‘M-NN’ method, therefore, we define templates as the average feature
vector for a particular class. We then modify the representation for a sample s by
subtracting the template of c+ and adding the template of c−. All representations
except SEM (single) are built from the BXENT (joint) models with nl = 300.
For CoDiR they are built from CoDiR (capt) with nl = 300.
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For all baselines similarity is computed with the cosine similarity, whereas
for CoDiR we exploit its structure as: similarity = mean cos(D(s̄r),D(s)) over
all classes c for which cos(D(s̄r)

c,: , Tc) > 0.75 × tc. Here, notations are taken
from Sect. 3 and D(s̄r) is the modified representation of the reference sample.
mean cos(D(s̄r),D(s)) is the mean cosine similarity between D(s̄r) and D(s) with
the mean calculated over class dimensions. The similarity is thus calculated over
class dimensions where classes with low relevance, i.e., those that have a low
similarity with the templates, are not taken into account.

The advantages of the composability of the representations can be seen in
Table 2a where CoDiR (capt) has comparable performance to the fully semantic
SEM (joint) representations. CNN (joint) manages to obtain a decent M-NN
precision score, thus changing class information well, but at the cost of losing
contextual information (low F1%), performing almost as poorly as SEM (single).
Whereas CM performs well on the NN task, it doesn’t change the class informa-
tion accurately and thus (inadvertently) retains most contextual information.

Rank. While the previous section shows that the structure of CoDiR repre-
sentations provides access to semantic information derived from the labels on
which they were trained, we hypothesize that the representations contain addi-
tional information beyond those labels, reflecting local, continuous features in
the images. To investigate this hypothesis, we perform an experiment, similar to
[15], to determine the rank of a matrix composed of 1000 instance representations
of the test set. To maintain stability we take only the first 3 rows (corresponding
to 3 classes) and all 300 environments of each representation. Each of these is
flattened into a 1D vector of size 900 to construct a matrix of size 1000 * 900.
Small singular values are thresholded as set by [8]. The used model is the CoDiR
(capt) ResNet-18 model with nl = 300. We obtain a rank of 499, which exceeds
the amount of class and environment labels (3+300) within, suggesting that the
representations contain additional structure beyond the original labels.

The representations can thus be compressed. Table 2a shows that C-CoDiR
with k = 5, denoted as C-CoDiR(5), approaches CoDiR’s performance across
all defined retrieval tasks. To show that the CoDiR representations contain infor-
mation beyond the pre-trained labels, we also use cross-validation to perform a
binary classification task with a simple logistic regression. A subset of 400 images
of dogs is taken from the validation and test sets, of which 24 and 17 respectively
are positive samples of the previously unseen label: panting dogs. The outcome
in Table 2b shows that CoDiR and C-CoDiR(5) representations outperform the
purely semantic representations of the SEM model, which shows that the addi-
tional continuous information is valuable.

5 Conclusion

CoDiR is a novel deep learning method to learn representations that can combine
different modalities. The instance representations are obtained from images with
a convolutional neural network and are structured along class and environment
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dimensions. Templates are derived from the instance representations that gener-
alize the class-specific information. In a classification task it is shown that this
generalization improves as richer contextual information is added to the envi-
ronments. When environments are built with labels from image captions, the
CoDiR representations consistently outperform their respective baselines. The
representations are continuous and have a high rank, as demonstrated by their
ability to classify a label that was not seen during pre-training with a simple
logistic regression. At the same time, they contain a clear structure which allows
for a semantic interpretation of the content. It is shown in a retrieval task that
the representations can be decomposed, modified and recomposed to reflect the
modified information, while conserving existing information.

CoDiR opens an interesting path for deep learning applications to explore
uses of structured representations, similar to how such structured matrices played
a central role in many language processing approaches in the past. In zero-shot
settings the structure might be exploited, for example, to make compositions
of classes and environments that were not seen before. Additionally, further
research might explore unsupervised learning or how the method can be applied
to other tasks and modalities with alternative building blocks for the environ-
ments. While we demonstrate the method with a Wasserstein-based distance,
other distance or similarity metrics could be examined in future work.
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Abstract. In sequence learning tasks such as language modelling,
Recurrent Neural Networks must learn relationships between input fea-
tures separated by time. State of the art models such as LSTM and
Transformer are trained by backpropagation of losses into prior hidden
states and inputs held in memory. This allows gradients to travel through
time from present to past and effectively learn with perfect hindsight, but
at a significant memory cost. In this paper we show that it is possible to
train high performance recurrent networks using information that is local
in time, and thereby achieve a significantly reduced memory footprint.
We describe a predictive autoencoder called bRSM featuring recurrent
connections, sparse activations, and a boosting rule for improved cell
utilization. The architecture demonstrates near optimal performance on
a non-deterministic (stochastic) partially-observable sequence learning
task consisting of high-Markov-order sequences of MNIST digits. We
find that this model learns these sequences faster and more completely
than an LSTM, and offer several possible explanations why the LSTM
architecture might struggle with the partially observable sequence struc-
ture in this task. We also apply our model to a next word prediction task
on the Penn Treebank (PTB) dataset. We show that a ‘flattened’ RSM
network, when paired with a modern semantic word embedding and the
addition of boosting, achieves 103.5 PPL (a 20-point improvement over
the best N-gram models), beating ordinary RNNs trained with BPTT
and approaching the scores of early LSTM implementations. This work
provides encouraging evidence that strong results on challenging tasks
such as language modeling may be possible using less memory intensive
and more biologically-plausible training regimes.
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1 Introduction

The challenge of modeling relationships between features separated by a large
number of timesteps is well known. Language modeling, the task of next char-
acter or next word prediction, is an extensively studied task that highlights the
need to capture the long-distance relationships that are inherent to natural lan-
guage. Historically, a variety of architectures have achieved excellent language
modeling performance. Although larger datasets and increased memory capac-
ity have also improved results, architectural changes have been associated with
more significant improvements on older benchmarks.

N-gram models are an intuitive baseline model and were developed early
in this history. N-gram models learn a distribution over the corpus vocabulary
conditioned on n prior tokens. Among N-gram models, smoothed 5-gram models
achieve minimum perplexity on the Penn Treebank corpus [11], a result that
illustrates constraints on the value of increasingly long temporal context.

More recent approaches have demonstrated the success of neural models such
as Recurrent Neural Networks applied to language modeling. In 2011, [13] pre-
sented a review of language models on the Penn Treebank (PTB) corpus showing
that recurrent neural models at that time outperformed all other architectures.

Ordinary RNNs are known to be prone to vanishing gradients—partial deriva-
tives used to backpropagate error signals across many layers approach zero.
Hochreiter et al. introduced a novel multi-gate architecture called Long Short-
Term Memory (LSTM) as a potential solution [9]. Models featuring LSTM have
produced state of the art results in language modeling, demonstrating their abil-
ity to robustly learn long-range causal structure in sequential input.

RNNs appear to be a natural fit for language modeling due to the sequen-
tial nature of the task, but feed-forward networks utilizing novel convolutional
strategies have also been competitive in recent years. WaveNet is a deep autore-
gressive model using dilated causal convolutions in order to achieve long tem-
poral range receptive fields [16]. A recent review compared the wider family of
temporal convolutional networks (TCN)—of which WaveNet is a member—with
recurrent architectures such as LSTM and GRU, finding that TCNs surpassed
traditional recurrent models on a wide range of sequence learning tasks [2].

Extending the concept of replacing recurrence with autoregressive convolu-
tion, [18] added attentional filtering to their Transformer network. The Trans-
former uses a deep encoder and decoder each composed of multi-headed attention
and feed-forward layers. While the dilated convolutions of WaveNet allow it to
learn relationships across longer temporal windows, attention allows the network
to learn which parts of the input, as well as intermediate hidden states, are most
useful for the present output.

Current state-of-the-art results are achieved by GPT-2, a 1.5 billion param-
eter Transformer [5], which obtains 35.7 PPL on the PTB task (see Table 2).
The previous state of the art was an LSTM with the addition of mutual gating
of the current input and the previous output reporting 44.8 PPL [12].

Common to all the neural approaches reviewed here is the use of some form
of deep-backpropagation (BP), either by unrolling through time (see Sect. 3.1 for
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more detail) or through a finite window of recent inputs (WaveNet, Transformer).
Since most of these models also feature deep multilayer architectures, during
backpropagation gradients must flow across layers, and over time steps, resulting
in very large computational graphs. By contrast, all non-deep-BP methods in
the literature are noticeably less capable (e.g. none achieve < 100 PPL on PTB).

1.1 Motivation

The question remains whether models without deep BP can equal the impres-
sive results from the recurrent, autoregressive, and attention-based architectures
listed above. Models that avoid BP across many layers or time steps (i.e. without
time-travel) are interesting for two reasons. First, the computational efficiency
of deep learning is increasingly important, both due to practical resource con-
straints and environmental considerations [6]. Second, since deep BP is incon-
sistent with known biological learning mechanisms, strictly local computational
models may lead to the discovery of alternative approaches. Specifically, we are
interested in models that lie within the biologically plausible criteria outlined by
[17]: 1) local and immediate credit assignment, 2) no synaptic memory, and 3)
no time-traveling synapses. Our goal is to explore and advance the performance
bounds of sequence learning models given these bio-plausibility constraints.

2 Method

2.1 Original RSM Model

We began with the Recurrent Sparse Memory (RSM) architecture [17]. In the
cited work, RSM was shown to be comparable to RNNs trained by BPTT in a
variety of tasks, but was inferior when generalizing to unseen sequences. This
paper introduces new techniques that appear to mitigate those deficits. RSM is
a predictive recurrent autoencoder that receives sequential inputs (e.g. images
or word tokens), and is trained to generate a prediction of the next input (see
Fig. 1a). Like Hierarchical Temporal Memory [8], the RSM memory is organized
into m groups (or mini-columns), each composed of n cells. Cells within each
group share a single set of weights from feed forward input, such that the feed-
forward contribution zF is an m-dimensional vector computed as:

zF = wF xF (t) (1)

Each cell receives dense recurrent connections from all cells at the previous
time step, and the recurrent contribution zR is an m × n matrix computed as:

zR = wRxR(t) (2)

σij is an m×n matrix holding the weighted sum combining feed-forward and
recurrent input to each cell j in group i, and is given by:

σij = zF
i + zR

ij (3)
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A top-k sparsity is used as per [10]. RSM implements this sparsity by com-
puting two sparse binary masks, Mπ and Mλ, which indicate the most active cell
(one per group), and most active group (k per layer), respectively. An inhibition
trace was used in the original model to encourage efficient resource utilization
during the sparsening step, but is replaced with boosting in this work (see Sect.
3.2 for discussion). The final output is calculated by applying a tanh nonlinearity
to the sparsened activity:

yij = tanh(σij · Mλ
i · Mπ

ij) (4)

A memory trace ψ(t) is maintained with an exponential decay parameterized
by ε, such that ψ(t) = max(ψ(t − 1) · ε,y). From ψ, the recurrent input at the
next time step is calculated by normalizing with constant α, chosen such that
the activity in xR sums to 1:

xR(t + 1) = α · ψ(t) (5)

Like other predictive autoencoders, RSM is trained to generate the next input
x̂F by “decoding” from the max of each group’s sparse activity:

yλ
i = max(yi1, . . . ,yin) (6)

The prediction is computed as x̂F (t) = wDyλ, where wD is a weight matrix
with dimension equal to the transpose of wF . BP depth is therefore fixed at
two. Finally, to read out labels or word distributions from the network, RSM
uses a simple classifier network composed of a 2-layer fully connected ANN
using leaky ReLU nonlinearities. The classifier network is trained concurrently
but independently to the RSM network (not sharing gradients), and takes the
RSM’s hidden state as input.

2.2 Boosted RSM (bRSM)

In an attempt to achieve better generalization, we developed a variant of RSM
that replaces cell-inhibition with a cell activity ‘boosting’ scheme. For brevity,
we refer to the modified algorithm as bRSM1.

We find that bRSM significantly improves performance on the language mod-
eling task. We review each of our adjustments in the section below.

Flattened Network. A fundamental dynamic of HTM-like architectures is
that each mini-column learns some spatial structure in the input, and each cell
within a mini-column learns a transition from a prior representation [7]. A poten-
tial limitation of this architecture is that, while representations of the input via

1 Code for the bRSM model and all experiments is available at https://github.com/
numenta/nupic.research/tree/master/projects/rsm.

https://github.com/numenta/nupic.research/tree/master/projects/rsm
https://github.com/numenta/nupic.research/tree/master/projects/rsm
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Fig. 1. The RSM architecture and typical outputs when applied to the high-order,
partially-observable stochastic sequential MNIST task (see Sect. 3.1). RSM is a sparse
recurrent predictive autoencoder. The classifier network has two fully-connected layers.
Note that, as per original paper, the RSM network is trained only on the local MSE loss,
and is not trained by gradients backpropagated from the classifier network. In (b), rows
alternate between actual 9-digit samples from the grammar, and bRSM predictions.
Sequences “6-4-1-3-9” and “3-4-1-3-1” (with common subsequence “4-1-3” outlined)
are predicted correctly.

feed forward connections benefit from shared spatial semantics (similar represen-
tations for similar inputs), the predictive representations from recurrent connec-
tions lack this property: similar sequence items in different sequential contexts
are highly orthogonal [17].

To illustrate a potential inefficiency of this orthogonality, consider a network
trained on sequences where some set of similar inputs A = {A1, A2, A3} predict
both B and C at the next time step, prompting cells in the representations of
both B and C to activate when exposed to inputs in A. These cells may contain
nearly identical weights linked to a sparse representation generalizing across pat-
terns in A. Such a redundancy might be avoided if some subset of cells having
learned the transition from A could be shared by both B and C. This line of
reasoning motivated experiments in which each group was set to have only one
cell, thus removing shared feed-forward weights from the model, and enabling
decoding from the full hidden state rather than a group-max bottleneck. The
flexibility of allowing predictive cells to participate in multiple input representa-
tions may explain the improved performance of this flattened architecture in the
language modeling task, though we suspect the grouped model may be beneficial
on tasks with higher-order compositionality in space or time.

Boosting. Sparse networks may learn locally optimal configurations in which
only a small fraction of a layer’s representational capacity is used, resulting in
many idle cells and limited performance. The original RSM model employs an
inhibition strategy whereby an exponentially decaying trace is used to discourage
recently active cells from re-activating.

An alternative, “boosting” strategy is proposed to achieve the same goal
but with different statistical characteristics. We used the boosted k-Winners
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algorithm suggested by [1]. This algorithm tracks the duty cycle of each cell
di, which captures the probability of recent activation (sparsened via top-k
masking):

di(t) = (1 − α) · di(t − 1) + α[i ∈ topIndices] (7)

A per-cell boost term bi is then computed based on this duty cycle, increasing
the probability of less active cells firing, and inhibiting those more recently active.

bi(t) = eβ(â−di(t)) (8)

Here, â is the expected layer sparseness defined as the number of winners
divided by the layer size, k

mn , and β is the boost strength hyper-parameter
which can be optionally configured to remain fixed or decay during training.
The per-cell weighted sum σij is then redefined as:

σij = (zF
i + zR

ij) · bi (9)

Trainable Decay. In language modeling, some tokens may provide useful con-
text to word prediction many tokens in the future (e.g. rare words unique to a
particular topic), while others may be primarily relevant for next word predic-
tion (e.g. articles indicating syntactic structure). In the original RSM model, the
rate of decay of the recurrent input is parameterized by a single scalar value ε,
which is multiplied into the prior memory state on each time step. While each
cell participates in multiple input representations, it may be possible to improve
generalization performance by learning a unique exponential decay scalar for
each cell in the memory. We implemented trainable decay as a single tensor Δ
of dimension m × n (equivalent to just m in the flattened architecture), which
we pass through a Sigmoid before applying to the memory in the decay step:

ψ(t + 1) = ψ(t) · σ(Δ) (10)

Trainable decay requires a nominal increase in parameters, but yields a con-
sistent small improvement (˜5 PPL on next word prediction).

Functional Partitioning. We found one final addition to be significantly ben-
eficial on the stochastic sequential MNIST task (detailed in Sect. 3.1). In this
version of the model, the bRSM memory is partitioned into either two or three
blocks: one taking feed-forward input only, one taking recurrent input only, and
one integrating both input sources via addition. This third section is equivalent
to the full memory in the original RSM model. To ensure utilization across all
partitions while keeping target sparsity consistent, we applied the top-k non-
linearity to each partition separately, with partition winners kp proportional to
partition cell count mp: kp = k

mp

m .
The motivation behind functional partitioning was an extension of the logic

behind the use of a flattened memory. To the extent that it is useful for some
cells to represent transitions from prior input, and others to represent current
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input, we wondered if an architecture in which these functional roles are enforced
would improve performance.

The resultant model contains fewer parameters since a portion of cells are
connected only to the input, which has lower dimensionality than the full mem-
ory. Results for ssMNIST are shown in Fig. 2.

3 Experiments

We selected tasks anticipated to be difficult for RNNs and RSM in particular,
to enable empirical characterization of its limitations. We tested bRSM on two
tasks: a non-deterministic version of the original partially-observable MNIST
sequence task [17], as well as next word prediction on the Penn Treebank corpus.

3.1 Stochastic Sequential MNIST (ssMNIST)

Sequence Learning with Both Spatial and Sequential Uncertainty. In
this task a grammar generates an infinite sequence of digits in the range [0..9].
The model tries to predict the next digit. However, at each step the model’s
input is a randomly drawn MNIST image of the specified digit, rather than
the digit itself (i.e. the digit-label is partially observable). In the original RSM
paper, a repeating, deterministic higher-order sequence of digits was used e.g.
“0123 0123 0321”. In this work, the grammar emits deterministic subsequences
in a random order. This requires repeatable subsequences to be learned and
recognized, while also learning to ignore the order of subsequences, which has no
predictive value. Observations (images) and transitions are then both partially
non-deterministic. We generated a test grammar composed of 8 subsequences
of 9 MNIST digits each (dimension specified to minimize confusion, see sample
sequence and predicted outputs in Fig. 1b).

To ensure that solving the task would require the successful learning of higher
order sequences, we confirmed that prediction of at least some of the transitions
in the resultant subsequences required memory of digits two or more steps prior.

Unlike many RNN tasks, there is no flag or special token to indicate subse-
quence boundaries or task reset. Without any priors for the length or existence
of subsequences, the ssMNIST task is challenging even for humans.

Baseline: tBPTT Trained LSTM. We chose an LSTM as a ‘baseline’ algo-
rithm to represent the deep-backpropagation approach. Modern recurrent neu-
ral networks such as LSTMs are trained using backpropagation through time
(BPTT), which conceptually unrolls the network’s computational graph across
multiple time steps resulting in a standard multi-layer feed-forward network,
and then backpropagating the loss from one or more output layers (or heads)
towards the shallower layers representing earlier timesteps.

The LSTM was trained with Adam using a learning rate of 2× 10−5. We set
LSTM hidden layer to 450, giving approximately the same trainable parameter
count as the bRSM model (2.57M parameters).



Long Distance Relationships Without Time Travel 59

Table 1. ssMNIST results on 8 × 9 grammar. Accuracy is reported as mean ± one
standard deviation, and max over 5 runs to account for observed inter-run variance.
Theoretical ceiling on accuracy for this grammar is 88.8%.

Model Params Mean Acc Max Acc

LSTM (cont) 2.6M 80.0% ± 9.1 81.4%

LSTM (mbs = 100) 2.6M 73.4% ± 18.2 82.7%

bRSM 2.5M 86.4% ± 0.3 86.8%

bRSM (partitioned) 1.8M 88.8% ± 0.1 88.9%

We implemented a training regime consistent with the improved truncated-
BPTT algorithm proposed by [19], which is parameterized by two integers
determining the flow of gradients through past states of the network. In
tBPTT (k1, k2), k1 specifies the interval at which to inject error from the last
k1 outputs, while k2 specifies the length of the history through which gradients
should propagate. We set k1 = 1 to match the online “one digit, one prediction”
dynamic of the ssMNIST task. After disappointing initial results with large k2
values, we experimented with a range of values to empirically optimize LSTM
performance.

To confirm correctness of the LSTM baseline algorithm, we verified it is able
to solve a simplified (fully observable) version of the task where the same MNIST
image is used at each occurrence of a given digit. Under these conditions, LSTM
achieves the theoretical accuracy limit comparatively quickly, though displays
volatility even after approaching this accuracy ceiling (see Fig. 2, lower-right
plot). This volatility is likely a consequence of models attempting to ‘learn’
transitions between subsequences that are not in fact predictable.

We also found significant improvement from periodically clearing LSTM
memory state, perhaps acting as a max-context-length prior. Figure 2 explores
univariate optimization of this parameter, measured in mini-batches mbs.

Optimization of the backpropagation window (k2) and state clearing interval
(mbs) advantage the LSTM with two sources of an implicit prior on the length
of salient temporal context. Intuitively, setting k2 or mbs below our grammar’s
subsequence length would make it impossible to learn high-order relationships,
and too large of a value might confound the network by offering far more tem-
poral context than is useful for learning transitions within each subsequence.
We anticipated and confirmed that maximum accuracy would be achieved when
both parameters were tuned to convey a useful prior on context while supplying
a sufficient history to robustly learn the higher-order temporal relationships in
the data. Results from experiments with varying configurations of tBPTT and
state clearing are shown in Fig. 2 and appear to support this understanding.

Results. Over all training regimes tested, LSTM with the continuous configu-
ration and k2 = 30 achieved the best mean accuracy 80.0% across runs (90.0%
of the theoretical limit for this grammar). The highest accuracy was observed
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Fig. 2. LSTM and bRSM performance on ssMNIST. Mean accuracy (line), standard
error (shadow) and range (light shadow) across repeated runs. Gray line is theoretical
accuracy ceiling for the 8 × 9 grammar. Error and range are plotted for all architectures,
although bRSM inter-run variance is not visible. The lower-right plot (note scaled x-
axis) shows LSTM and bRSM performance when using a constant image for each
digit, removing the partially observable aspect. In this case LSTM successfully solves
the sequence learning task.

with mbs = 100 and k2 = 30, reaching 82.7%, but inter-run variance was sig-
nificantly higher in this configuration. In comparison the non-partitioned and
partitioned variants of bRSM achieved 86.4% and 88.8% respectively, with very
little inter-run variance. A summary of results is shown in Table 1.

LSTM did not achieve the maximum achievable prediction accuracy even
with the additional context-length clues implicitly provided by the training
regime. LSTM showed slower convergence, increased volatility and lower eventual
accuracy without these clues. The much better results using a constant image
for each digit suggest that the combination of partial observability, sequential
uncertainty and unmarked subsequence boundaries make this task especially
difficult for conventional recurrent models. In contrast, bRSM was able to learn
the partially observable sequence relationships without the need to tune hyper-
parameters in accordance with the grammar’s true time horizon. Furthermore,
as noted by Rawlinson et al., by avoiding BPTT, RSM has an asymptotic mem-
ory use of O(c), where c is the number of cells in the hidden layer. This is
a significant reduction from deep-backpropagation models which require O(ct),
where t is the time-horizon, even when both models have the same number of
parameters. For the empirically optimal tBPTT parameterization used in this
analysis t = k2 = 30, which implies that 30× more memory is required. Overall,
bRSM achieves better sequence learning performance than an ordinary LSTM
in this partially observable condition, with less prior knowledge of the task and
significantly less memory requirement.

3.2 Language Modeling

Dataset. We show language modeling results using the popular Penn Treebank
(PTB) corpus with preprocessing as per [15]. RSM’s performance on this lan-
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guage modeling task was the weakest result of those originally reported, making
it an ideal target to determine if the observed limitations could be overcome.
Model evaluation was performed using the test corpus.

Training Regime. We pretrained a 100-dimensional FastText embedding [4] on
the training corpus, and used this as input for all experiments. We observed that,
consistent with previous findings [17], bRSM overfits the PTB training set after
40–60,000 mini-batches of training. Optimal results were obtained by pausing
training of the bRSM model at this time but continuing classifier training. In
future we intend to develop an automatic stopping criterion.

Results. Towards our goal of exploring the performance bounds of models under
our bio-plausibility constraints, we present results from experiments with bRSM
on the PTB dataset. The lowest test perplexity (103.5 PPL) was achieved using
the first three additions presented in Sect. 2.2 (all but functional partitioning).
A 7% word cache was effective, but an ensemble of bRSM and KN5 did not
significantly improve test performance. KN5 results are shown to illustrate the
performance of statistically defined n-gram models.

Table 2 reports results for the final bRSM model as well as versions of this
model with each added feature ablated. bRSM, with and without the word cache,
outperforms all early language modeling architectures, including ordinary (non-
gated) recurrent neural language models trained with BPTT. While these results
are not yet competitive with state-of-the-art deep models such as the Trans-
former, and modern LSTM-based approaches, they demonstrate a significant
step forward for resource efficient performance.

Table 2. Language modeling results. †: As reported by [14].

bRSM comparison

Model Test PPL Params

KN5 † 141.2 –
KN5 + cache † 125.7 –
Random Forest LM † 131.9 –
RNN LM (tBPTT) † 124.7 –
bRSM + cache 103.5 2.55M

LSTM 78.9 13M
Mogrifier LSTM 50.1 24M
GPT-2 35.7 1500M

bRSM feature ablations

LPPtseTledoM

bRSM + cache 103.5
· Non-semantic embedding 152.6
· Inhibition instead of boosting 144.0
· Non-flattened (m=800, n=3) 112.8
· Without cache 112.0
· Untrained decay rate 107.3
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Fig. 3. Layer entropy comparison of boosting vs inhibition strategy. Maximum possible
layer entropy shown by dashed gray line.

Resource Utilization (Boosting vs Inhibition). Differing temporal dynam-
ics may explain the gap in performance between boosting and inhibition strate-
gies. Boosting integrates a moving average of individual cell activity across hun-
dreds of time steps, promoting the use of idle cells. In contrast, inhibition pro-
duces a strong and immediate effect where cells are fully inhibited from firing
after a single activation. Both strategies aim to improve resource utilization.

These strategies can be compared by measuring the informational capacity
of the RSM memory using layer entropy (Hl), calculated from the duty cycle:

Hl =
∑

i

−di log2 di − (1 − di) log2(1 − di) (11)

We can compare layer entropy during training and at inference time with the
theoretical maximum binary entropy for an RSM layer, which is a function only
of layer sparseness (s = k

mn ):

Hl,max = −s log2(s) − (1 − s) log2(1 − s) (12)

In Fig. 3, we compare the time course of binary entropy for two RSM mod-
els differing only in resource utilization strategy. As expected, both strategies
have the effect of increasing layer entropy compared to having no strategy to
promote the use of idle cells. We note that inhibition exhibits nearly identical
entropy dynamics across training and test sets—approximately 425 bits, or 93%
of maximum entropy—while the boosted model’s test entropy is reduced during
exposure to unseen test sequences.

This result supports a traditional bias-variance trade-off between encoding
entropy and generalization performance of sparse recurrent networks. In the high
entropy case using inhibition, similar sequences are encoded in highly orthogonal
patterns, which may support high capacity memorization. This is helpful when
there is an opportunity to learn to interpret these patterns, but confounding
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when generalizing to unseen sequences, because similar contexts are encoded in
dissimilar ways. This is consistent with our observation that inhibition produces
worse perplexity and higher entropy on the test corpus.

However, some recent work has questioned the notion that high capacity
function classes necessarily result in poor generalization performance [3], and
so alternative explanations can be considered as well. For example, the strong
inhibition of recently active cells may recruit arbitrary non-semantic encodings
that struggle to generalize without implicating excessive capacity. In either case,
encoding unseen sequences from the test corpus with relatively lower entropy
implies that fewer unique encodings are produced. We hypothesize that the net-
work falls back to known encodings of similar contexts, which the classifier net-
work is able to interpret. Consequently, relatively better perplexity is observed
from the lower-entropy test-corpus encoding.

4 Conclusion

We presented a sparse predictive autoencoder with a low memory footprint,
trained on a time-local error signal. As far as we’re aware, this model demon-
strates the best results to date on the PTB language modeling task among
models not relying upon memory-intensive deep-backpropagation across many
layers and/or time steps. Neural language models with better performance all use
additional mechanisms to selectively filter and store historical state (e.g. atten-
tion and gating in Transformer and LSTM networks); our goal is not to beat
them, but to show that learning rules which are local in time and space could
be competitive, given further development. This work provides encouraging evi-
dence that strong results on challenging tasks such as language modeling may
be possible using less memory intensive and more biologically-plausible training
regimes.

We also showed that given weak partial-observability and uncertain sequence
structure without boundary markers, our approach outperformed a comparable
LSTM. This result also merits further investigation to understand the relation-
ship between these task characteristics and local versus deep learning rules.
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Abstract. In this paper, we study the use of plugins that perform mul-
tiscale feature aggregation for improving the accuracy of object detection
algorithms. These plugins improve the input feature representation, and
also remove the semantic ambiguity and background noise arising from
feature fusion of low and high layers representation. Further, these plu-
gins improve focus on the contextual information that comes from the
shallow layers. We carefully choose the plugins to strike a delicate bal-
ance between accuracy and model size. These plugins are generic and
can be easily merged with the baseline models, which avoids the need
for retraining the model. We perform experiments using the PASCAL-
VOC2007 dataset. While the baseline SSD has 22M parameters and an
mAP score of 77.20, the use of the SFCM (one of the plugins we used)
increases the mAP score to 78.82 and the number of parameters to 25M.

1 Introduction

Object detection aims to find the bounding box and the category or class of
an object for a given input image. Object detection is an essential task in com-
puter vision, and it finds application in areas including image retrieval, security,
surveillance, automated vehicle systems, and machine inspection. The effective-
ness of object detection models is measured by computing the accuracy of object
classification and object location.

Based on their representation approach, the CNN-based object detectors can
be divided into two categories: single-scale representation and multiscale repre-
sentation. The examples of object detectors using single-scale representation are
YOLO, RCNN, Fast-RCNN and Faster-RCNN. All these models extract infor-
mation about an object’s class and location based on the last layer of CNN. By
contrast, SSD [1] uses a multiscale representation where the object is detected
with different scales and aspect ratios. SSD strikes a good balance between accu-
racy and speed. It provides real-time performance, which is crucial in many
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applications such as autonomous driving [2]. For this reason, in this paper, we
use SSD as the baseline model.

A limitation of SSD is that its accuracy is relatively low. We propose using
multiscale features to mitigate this limitation, which brings up more context
information to the later layers. The head detector can use these features to
predict the target with better accuracy. The motivation for utilizing multiscale
features can be understood from Fig. 1(a). Here, we have N convolution layers.
We resize their output to have the same size and then concatenate them. Now, we
have a collection of information extracted from different layers. This collection
can improve detection by incorporating the context more closer to the prediction
head. We can get more context information from high-level layers because they
have larger receptive fields. For example, the context for a ‘ship’ will be the ‘sea’
for the high-level layers. Based on this knowledge, the network can reduce false
positives on the seashore. However, due to the pooling layers, the feature maps’
resolution gradually decreases, which leads to missing out some of the small tar-
gets. Therefore, it is necessary to use both high-level semantically robust features
and low-level high-resolution features. Figure 1(b) shows an example, where we
only focus on the low-level features. Due to this, we lose the global-context and
are unable to detect this object as the dog. Evidently, aggregating multiscale
features is vital for achieving high accuracy on a broad range of images.

Fig. 1. (a) Multiscale features concatenation for piling better contextual information;
(b) Focusing on low-level features alone can lead to losing the ‘big-picture’.

Contributions: In this paper, we perform multiscale feature aggregation using
plugins that perform feature-fusion or utilize attention mechanisms. Previous
works have used these plugins for image classification only. However, their effec-
tiveness for object detection is not well understood. We carefully choose the plu-
gins to strike a fine balance between accuracy, model size and inference latency.
Specifically, we have used CBAM [3], SFCM [4], CFE [5], SE [6] and DANet
[7] (Sect. 2.2). These plugins improve the input feature representation, and also
remove the semantic ambiguity and background noise arising from feature fusion
of low-level and high-level layers representation. Further, these plugins improve
focus on the contextual information that comes from the shallow layers. We show
that using these plugins improves accuracy, especially those that can be easily
identified from their context. In the VOC2007 dataset, examples of such objects
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are bird, boat, airplane, and plant, which have either consistent surrounding
or consistent appearance. These plugins are generic and can be easily merged
with the baseline models. Thus, it avoids the need for retraining the model from
scratch. It is especially beneficial in many domains where retraining is infeasi-
ble due to its high cost or impossible due to a lack of access to the training
data. We have performed experiments on the PASCAL-VOC2007 dataset (Sect.
3.1). The baseline SSD has 22M parameters, with an mAP score of 77.20 and
achieves a frame rate of 56 frames/second. One of our plugins, viz. SSD-SFCM
increases the mAP score to 78.82 and the number of parameters to 25M, while
achieving a frame-rate of 50 frames/second. Similarly, other plugins also achieve
higher accuracy than the baseline SSD. We also compare the results of different
plugins and explain the reasoning behind their performance. To the best of our
knowledge, our work is the first to comprehensively test the efficiency of these
plugins with the fusion of multiscale features in object-detection algorithms.

2 Proposed Approach

2.1 Motivating the Need of Feature-Fusion

Figure 2 shows the generic architecture of the multi-box-SSD object detector,
which uses VGG16 as the backbone network. It is evident from the figure that
several multi-scale features contribute to the object detection head.

Fig. 2. Generic architecture of multibox-SSD object detector. (Color figure online)

These features can be categorized into two parts: (1) high-level features
obtained from later convolution layers. They represent semantic information of
an image. (2) low-level features that are obtained from the initial convolution
layers. These features contain more detailed information than those contained in
the high-level features [8]. Clearly, both types of features include complementary
information. The semantic features describe the visual content of an image by
correlating the low-level features such as color, gradient orientation, with the
content of an image. For example, we can associate the brown color with the
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table or door and the grey color with a statue. To find such correlations, we can
combine these different levels of information.

For performing multi-scale feature fusion, several methods have been pro-
posed, such as FSSD [9]. FSSD works on the idea that the receptive field of
conv4 3, conv5 3, and fc6 layers (refer Fig. 2) are better than those of later layers
since the following layers introduce more background noise. So, on the VOC2007
test dataset, the best mAP score is obtained by merging the feature-maps of the
conv4 3 and conv5 3 layers. To test the efficiency of FSSD, we re-implemented
it in PyTorch and compared it with the baseline SSD [1]. The results are shown
in Table 1, which shows that FSSD achieves higher mAP than the baseline SSD.

Table 1. Motivating results: a comparison of SSD and FSSD on VOC2007 dataset

Model Number of parameters mAP Frame-rate (FPS)

SSD 22 million 77.2 56

FSSD 28 million 78.42 51

A limitation of FSSD is that it blindly concatenates the low-level and high-
level features and feeds them to the head-detector [4]. To overcome this limi-
tation, we propose to use plugins that eliminate the semantic gap between the
fused features. These plugins also remove the background clutter and enable
better focus on an object. Further, these plugins effectively correlate the seman-
tic and detailed information and, thus, can include contextual information from
the target layer. Our goal in choosing the plugins is to improve the mAP score
with a minimal increase in the model size and minimal impact on the frame-rate.
Keeping the model size small is especially important because many deep-learning
applications run on mobile devices [10,11].

2.2 Implementing Aggregation Plugins in SSD-VGG16 Model

We have tested the following plugins.

1. SSD-CBAM: CBAM referred to Convolution based Attention Module and
was proposed by Woo et al. [3]. CBAM is a lightweight module and can be
trained end-to-end together with the baseline CNN architecture. Given an inter-
mediate feature map, this module extracts attention masks along both channel
dimensions and spatial dimensions. These masks are then multiplied with the
input feature map to attain adaptive feature refinement. Figure 3 shows the
architecture of SSD-CBAM. Here, CBAM is applied to all the regression head
inputs. As shown in the results section (Sect. 3.2), SSD-CBAM achieves an mAP
score of 78.14, which is better than that of baseline SSD. Further, it has only
23M parameters, which is lower than that of the FSSD model.

2. SSD-Fusion-CBAM: Feature-fusion using CBAM leads to a semantic gap.
To remove this gap, we implemented SSD-Fusion-CBAM, which is shown in
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Fig. 4. As shown in this figure, the fusion block consists of one 3 × 3 convolution
layer for both conv4 3 and conv5 3 layer. We first perform upsampling of the
feature map of conv5 3 because the dimension of conv4 3 is 38 × 38, and the
dimension of conv5 3 is 19 × 19. Then, we apply a 3 × 3 convolution for conv5 3.
As shown in the results section, SSD-Fusion-CBAM achieves an mAP score of
78.78, which is better than both FSSD and SSD-CBAM implementations. A
downside of SSD-Fusion-CBAM is that it has 28M parameters.

3. SSD-SFCM: As shown above, SSD-Fusion-CBAM, which uses the fusion
model of FSSD [9], leads to a significant increase in the number of model param-
eters. To avoid this overhead, we replace this fusion block with SFCM. The SSD-

Fig. 3. The architecture of SSD-CBAM

Fig. 4. Architecture of SSD-Fusion-CBAM, the single-shot detector with focused fused
feature representation.
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SFCM model achieves the benefits of both fusion and attention. Here, SFCM
refers to the “selective feature connection mechanism” [4]. The architecture of
SSD-SFCM is shown in Fig. 5.

Fig. 5. Architecture of SSD-SFCM which uses both feature fusion and attention mech-
anism.

As shown in Fig. 5, we first upsample conv5 3 feature map and then convert
it into a weight mask of 38 × 38 × 1. Then, we apply the softmax function to
ensure that the values are non-negative. After this, the weight mask or attention
mask is used to give importance to each location of conv4 3 by multiplying the
weight mask with the conv4 3 feature map. Through this, we seek to achieve a
guided fusion of low-level layer and high-level layer feature maps, using a weight
mask generated through a high-level layer feature map. As shown in Sect. 3.2,
SSD-SFCM achieves an mAP of 78.82 with only 25M parameters. Thus, it strikes
a good tradeoff between accuracy and model size.

4. SSD-SFCM-CFE: The CFE module [5] is designed for broadening the recep-
tive field so that the model can detect smaller objects. Since it replaces a k × k
CONV with a 1×k and a k×1 CONV operations, it reduces the inference latency.
We consider the CFE module as another plugin and replace CFE fusion with
SFCM fusion. The CFE plugin used by us is lighter than the original CFENet
model. As shown in Fig. 6, the SSD-SFCM-CFE model has three CFE blocks.
We found that this model provides an mAP of 78.94, which is the highest mAP
achieved by any plugin we tested (Sect. 3.2). By contrast, a model with 3 CFE
blocks and CFE fusion block achieves an mAP of 78.47. Evidently, our implemen-
tation of SFCM fusion with the CFE plugin is better than the implementation
of the CFENet.
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Fig. 6. Architecture of SSD-SFCM-CFE. Here, the CFE module uses bigger receptive
field for feature representation enhancement.

For brevity, for the subsequent models, we only explain the plugin design,
since the remaining details are similar to those discussed above.

5. SSD-Fusion with SE Plugin: The Squeeze-and-Excitation (SE) [6] block
is shown in Fig. 7. This network focuses more on the informative features and
leaves out less useful features. The features are first squeezed for implementing
this, which leads to a channel descriptor that we obtained via merging of feature
maps across their spatial dimensions (H × W ). This operation is followed by
an excitation operation, which takes the embedding as input and produces a
collection of per-channel modulation weights. These weights are applied to the
feature maps to generate the SE block’s output, which can be fed directly into
the following layers of the model.

6. SSD-Fusion with DANet Plugin: Dual Attention Network (DANet) [7]
block is shown in Fig. 8. DANet has been designed to integrate the local fea-
tures with their global dependencies adaptively. It consists of two different types
of attention modules. One is the position attention module, and the other is a
channel attention module. The position attention module aggregates the feature
at each position by a weighted sum of the features at all positions. The chan-
nel attention module selectively emphasizes interdependent channel maps. The
output of both the modules is summed to improve the feature representation,
leading to better detections.
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Fig. 7. Architecture of SSD-Fusion-SE.

Fig. 8. Architecture of SSD-Fusion-DANet.

3 Results and Analysis

3.1 Experimental Platform

We perform experiments using the PyTorch framework on a P100 GPU [12]. All
the models are trained on the dataset created by a combination of VOC2007 [13]
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and VOC2012 [14] datasets. Both the datasets have in total 5,011 and 11,540
images with 12,608 and 27,450 annotated objects, respectively. We train all the
models with an input image size of 300 × 300 for 120k iterations. The learning
rate is set to 1e−3 for the first 80k iterations. We then decrease the learning rate
to 1e−4 and 1e−5 at 80k and 100k iterations, respectively. We initialized all the
added module layers by using Xavier’s initialization method. We evaluate all
our models on Pascal VOC 2007 test dataset, which has 4,952 images in total.
VOC2007 dataset has a total of 21 classes. The backbone of all the models is
the same i.e., VGG16. We have used pre-trained weights for the VGG-16 layers
[15].

3.2 Results

Table 2 compares the number of parameters, mAP and frame-rate of various
implementations. Since we do not make any changes in the network’s detection
head, the number of parameters reported in Table 2 includes only those param-
eters which are part of the network before the detection head. Notice that our
proposed implementations achieve higher mAP than the baseline SSD model.
By improving the input feature map representation, these plugins improve the
mAP.

Table 2. Results on the number of parameters, mAP and FPS of various implemen-
tations

Model Number of parameters mAP Frame-rate (FPS)

SSD (baseline) 22 million 77.20 56

SSD-CBAM 23 million 78.14 47

SSD-Fusion-CBAM 28 million 78.78 46

SSD-SFCM 25 million 78.82 50

SSD-SFCM-CFE 28 million 78.94 41

SSD-Fusion-SE 28 million 78.54 48

SSD-Fusion-DANet 31 million 78.29 44

As shown in Table 2, the baseline SSD model has the highest frame-rate and
the least number of parameters; however, its mAP is also the lowest. SSD-SFCM
and SSD-CBAM achieve the next highest frame-rate. The reason SSD-CBAM
has a lower frame-rate is the presence of two FC layers in this plugin. The SSD-
Fusion-CBAM has a higher frame rate than SSD-SFCM-CFE because CFE has
two parallel convolution layers and is heavier than the CBAM module.

Table 3 shows the detailed average precision (AP) for different object cate-
gories. The categories where a model achieves an absolute improvement in mAP
of more than 3% are highlighted in bold. We note that for the bike, bird, cow,
and train categories, SSD-Fusion-CBAM achieves a higher mAP score than SSD-
CBAM. For most of these objects, contextual information helps detect the object
accurately. On using the SSD-Fusion-CBAM plugin, this information is available
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in the model due to the piling of the feature maps of low-layer and high-layer.
Both CBAM and SFCM plugins use attention for better detection. CBAM has a
channel attention module and a spatial attention module. It takes input features
and passes them first through channel attention module and then through spa-
tial attention module to get the refined features. The SSD-CBAM plugin takes
a single input feature and does not consider previous layer features. Due to this,
SSD-CBAM cannot detect smaller objects at later detection stages; hence, its
mAP score remains low.

Table 3. Detailed results showing AP improvement in different categories

Model Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow

SSD(Baseline) 78.80 85.30 75.70 71.50 49.10 85.70 86.40 87.80 60.60 82.70

SSD-CBAM 83.14 83.46 75.81 70.49 53.34 85.47 86.38 88.03 61.84 82.59

SSD-Fusion-CBAM82.75 86.8378.27 73.21 52.92 86.62 86.45 88.24 62.01 86.13

SSD-SFCM 82.74 84.64 77.44 74.26 53.43 87.00 86.58 88.46 62.70 85.22

SSD-SFCM-CFE 84.10 85.66 77.19 73.54 52.73 86.96 86.81 88.47 63.92 84.51

SSD-Fusion-SE 83.98 85.35 75.68 70.66 53.46 86.51 86.81 88.50 63.3585.43

SSD-Fusion-DANet 84.30 87.19 77.17 70.32 52.51 86.01 86.84 88.85 61.96 83.81

Model Table Dog Horse MbikePersonPlant SheepSofa Train Tv

SSD(Baseline) 76.50 84.90 86.70 84.00 79.20 51.30 77.50 78.70 86.70 76.20

SSD-CBAM 78.87 85.03 86.33 85.95 79.79 52.96 78.48 80.45 80.45 76.87

SSD-Fusion-CBAM75.84 85.34 87.61 84.64 79.66 53.99 79.71 81.00 87.72 76.60

SSD-SFCM 78.84 85.62 87.13 85.25 79.94 52.36 79.96 79.86 87.71 77.18

SSD-SFCM-CFE 77.53 85.14 87.42 85.81 80.28 55.48 78.38 78.14 87.74 78.90

SSD-Fusion-SE 77.42 85.33 85.77 84.66 80.17 54.04 79.71 80.58 87.85 75.44

SSD-Fusion-DANet 77.04 86.09 87.74 85.04 79.87 50.48 77.45 80.16 87.24 75.80

The SFCM and SSD-Fusion-CBAM models also consider some previous layer
input features that also help in better detection of smaller objects. Another factor
behind improvement in mAP is that we use concatenation instead of summation
for achieving feature fusion. As confirmed by the previous works, such as Unet
[16] and pyramid networks [17], the concatenation of features helps preserve the
spatial information of small objects even though the feature maps become very
small. Also, we perform experiments on SSD-SFCM direct as well as the element-
wise version. The results are shown in Table 4. We can observe that the results
obtained from concatenation are better than those obtained from element-wise
summation.
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Table 4. A comparison of two fusion strategies: element-wise summation and concate-
nation

Model Number of parameters mAP Frame-rate (FPS)

SSD-SFCM-eltwise 25 million 78.35 49

SSD-SFCM-concat 25 million 78.82 50

SFCM works well because, here, fusion is done by computing the weight
attention score map. This score map is evaluated from high-level layers, which
guides the importance of each location of the low-level feature map.

SE is not better than CBAM because SE implementation only uses global
average pooled features. However, CBAM introduces a max-pooled feature along
with the averaged one. So this combination leads to better attention inference.
SE is also not better than SFCM as SFCM uses a guided attention mechanism
that is also missing in SE blocks. DANet also does not perform well as it is more
suited for segmentation rather than detection applications.

Some researchers achieve higher mAP by using larger image size. This, how-
ever, reduces the frame-rate significantly. SSD is designed to be a lightweight
network for real-time processing and for execution on even mobile platforms
such as Raspberry Pi. In such scenarios, large images may not be fed to SSD.
Further, the plugins used by us are especially meant to enhance the features in
smaller images. However, we expect that our plugins will improve the accuracy
with larger images also.

4 Conclusion

In this paper, we demonstrated multiscale feature aggregation using plugins
that perform feature-fusion or utilize attention mechanisms. We have carefully
chosen the plugins to strike a delicate balance between accuracy and model
size. In addition to improving the input feature representation, these plugins
also remove the semantic ambiguity and background noise arising due to feature
fusion of low and high layers representation. We show that our plugins help in
improving the accuracy of especially those objects that can be easily identified
from their context. Our future work will focus on designing new plugins and
evaluating these plugins on edge devices such as NVIDIA Jetson or FPGAs
[18]. We will also propose the techniques for improving the frame-rate without
harming the accuracy.
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Abstract. Noisy or adverse input is a threat to the safe deployment of
neural networks in production. To ensure the safe operations of such net-
works they need to be hardened to work under such conditions. Abstract
interpretation, as a tool to formally verify properties of computations,
can be used for this task. But, to date, this has mostly been studied
for feed-forward networks, but not so for recurrent neural networks. For
a subclass of recurrent neural networks, called echo state networks, we
propose a new training algorithm using abstract interpretation and con-
vex programming to increase the robustness against noisy inputs. Our
empirical results show that the new training regime improves the per-
formance of echo state networks in an open loop setup under high noise
and generally improves their performance in closed loop setups.

Keywords: Echo state networks · Abstract interpretation ·
Robustness

1 Introduction

Over the past decade, neural networks have gained increased popularity for a
variety of tasks, including safety-critical applications like autonomous driving.
Thus, verifying neural networks and increasing robustness against noise or adver-
sarial attacks is becoming more important. As the set of possible inputs can be
unbounded, simply going over all possible inputs one-by-one is not always feasi-
ble. Abstract interpretation [2], as stemming from formal verification, is a theory
that allows handling this state explosion, by abstracting concrete, single inputs,
by bundling them up into a so-called abstract object. In 2018 Mirman et al. [9]
and Gehr et al. [4] used abstract interpretation to verify and train deep neural
networks, using different abstractions. This approach on verifying neural net-
works is further refined by Singh et al. in 2018 and 2019 [13–15].

On the other hand, the verification and training of recurrent neural networks
with respect to local robustness are poorly studied. Our work focuses on a sub-
set of recurrent neural networks, i.e. echo state networks (ESNs) [8], a class of
recurrent neural networks where the internal and input weights are random and
only the readout layer is trained. A first approach on the verification of such
systems was given by Senn and Kumazawa in 2019 [12]. In this work echo state
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networks were analyzed using abstract interpretation, to estimate the influence
of noise on the output.

In this study, we take these ideas and propose a new training regime for
ESNs based on abstract interpretation and convex optimisation to improve the
robustness against noise. We show the effectiveness empirically in open- and
closed-loop ESNs.

Our main contributions are:

– A new training regime to increase the robustness of echo state networks
against perturbations of the input.

– Example implementation for abstract echo state networks (Available at:
https://github.com/delpart/AbstractEchoStateNetwork).

The rest of the paper is structured as follows: Sect. 2 introduces related
research in abstract interpretation for neural networks, followed by Sect. 3 which
explains how echo state networks and abstract interpretation can work together
and how we structured our experiments. Then, in Sect. 4, we show the results
gained by applying abstract interpretation and how these results can help in
applying such networks in real-life situations.

2 Related Work

A first milestone in abstract interpretation for deep learning models was given
in 2018 by Gehr et al. [4]. Their system AI2, utilizes abstract interpretation
to over-approximate inputs, e.g. images, using boxes, zonotopes [5] or polyhe-
dra. Transformers were created, which translate existing networks into abstract
domains and allow computation on abstract objects. This allows for an efficient
way to check if properties like robustness hold, but also introduces errors due
to over-approximation. A high level illustration is given in Fig. 1. An image is
abstracted using a box, e.g. by replacing each pixel with an interval, and then
the transformed layers are applied. The final layer then gives us a new abstract
object, possibly with a different shape and size, and we can then check if our
desired properties are valid, e.g. that the whole shape is within the expected
decision boundaries.

AI2 was further improved upon by Mirman et al. [9], introducing differen-
tiable abstract interpretation. This allows for training of provable robust neural
networks, but they limit their work, like AI2, to feed-forward networks. Next to
the box- and zonotope-domain used by AI2, they also introduced a new hybrid
zonotope domain placed in between the box and zonotope domain regarding
speed and accuracy.

In 2019, Sing et al. [14] introduced a domain based on polyhedra with inter-
vals, called DeepPoly. Their system enabled to proof robustness under complex
perturbations, like rotations, for the first time.

In contrast to the mentioned approaches, we focus on the training of a sub-
type of recurrent neural networks leveraging abstract interpretation. By using
the additional information, i.e. the shape and size of the abstract output, we
introduce a new training regime for robust training.

https://github.com/delpart/AbstractEchoStateNetwork
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Fig. 1. Illustration of AI2 on a high level. First, a concrete input is abstracted, e.g.
to a box. Then, transformed neural network layers are applied to the abstract object,
changing its size and shape. After the final layer, we can then check if the output fulfils
our desired properties. The blue point represents the center of the abstraction. The red
points are erroneous points (or images), which are not part of the exact solution but
are part of the abstraction due to over-approximation. (Color figure online)

3 Methods

3.1 Local Robustness

We define local robustness for a model as the resistance against small perturba-
tions of the input, i.e. small changes in the input should not change the output
beyond a given boundary. Formally we say a model f(x) is locally-δ-robust if
the following holds:

∀x ∈ Rd.|x − x0| ≤ δ ⇒ |f(x) − f(x0)| ≤ δtarget, d ∈ N, δ ∈ R+ (1)

In practice, Eq. 1 means that for a given input x0, e.g. an image, and a
distance metric |x|, e.g. ‖x‖0, other inputs x within the distance δ should give
the same or very similar results when we apply our model f to these inputs.
For example, when forecasting a time-series under noise, we want to get similar
results for the time-series with or without noise (see Fig. 2 for an example using
the Mackey-Glass time-series [6]).

3.2 Abstract Interpretation

To verify that the output of a model is within certain bounds under noise,
normally we have to test this property for each perturbed data point. As this
can become computationally infeasible, we create an abstraction containing all
possible points using ball arithmetic [16]. To describe the set of all points within a
distance xr = δ around a center xc we use the tuple <xc, xr>. By using standard
ball arithmetics, we can do computations on abstract objects. These abstract
objects can geometrically be interpreted as (hyper-)boxes and their domain is
called Box-Domain [7]. We can then check the boundaries of the intervals in each
dimension, and compare them to the desired properties, i.e. allowed upper and
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Fig. 2. The concrete 1-dimensional Mackey-Glass time-series (a) and a noisy 1-
dimensional Mackey-Glass time-series (b). The shaded area represents the maximum
expected deviation, caused by the noise with amplitude δ = 0.3.

lower bounds. For example, in Fig. 2(b), we might want to impose bounds on
the valid deviation when forecasting under noise.

To be able to work with abstractions, we redefine the matrix-vector product
and monotone functions for an abstraction using standard ball arithmetics x =
<xc, xr> as follows:

Ax = <Axc, |A|xr> (2)

f(x) := <f(xc), f(xc + xr) − f(xc)> (3)

3.3 Echo State Networks

ESNs are fixed, randomly created recurrent neural networks with a trainable
readout layer (see Fig. 4 for a schematic depiction). To update the state of the
network we apply the following function:

x(t + 1) = α ∗ x(t) + σ(Wx(t) + Winu(t)) (4)

With x(t) as the internal state (also called the reservoir), u(t) as the input,
W as the weights of the neural network, Win as the input weights, σ as the
hyperbolic tangent and α is the leaking factor.

To train it, we first drive the network with an input signal for a certain time,
called the washout-time, this is to make sure, that our reservoir is purely driven
by our input, i.e. that the initial state is forgotten. Then we start recording each
state into matrix X. We then solve XWout = y for Wout using ridge regression,
with y being our target output.
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3.4 Abstract Training

For ESNs to work with abstract elements we rewrite Eq. 4 using Eq. 2 and 3,
and get:

< xc(t + 1), xr(t + 1) >

=α∗ < xc(t), xr(t) > +σ(W < xc(t), xr(t) > +Win < uc(t), ur(t) >)

= < α ∗ xc(t), α ∗ xr(t) > +σ(< Wxc(t), |W |xr(t) > + < Winuc(t), |Win|ur(t) >)

= < α ∗ xc(t), α ∗ xr(t) > +σ(< Wxc(t) + Winuc(t), |W |xr(t) + |Win|ur(t) >)

= < α ∗ xc(t), α ∗ xr(t) > + < σ(Wxc(t) + Winuc(t)),

σ(Wxc(t) + Winuc(t) + |W |xr(t) + |Win|ur(t)

− |W |xr(t) + |Win|ur(t)) >

= < α ∗ xc(t) + σ(Wxc(t) + Winuc(t)),

α ∗ xr(t) + σ(Wxc(t) + Winuc(t) + |W |xr(t) + |Win|ur(t)

− |W |xr(t) + |Win|ur(t)) >

(5)

Similar to the classical training regime, we record the abstract outputs xc

and xr into the matrices Xc, respectively Xr and solve the following optimisation
problem:

argmin
Wout

‖XcWout − Yc‖

s.t. |Wout|Xr <= Yr

(6)

Here Yc represents the concrete values of our target function, and Yr the
maximum deviations we tolerate. We solved for Wout using convex optimisation
with cvxpy [3] and a Splitting Conic Solver [10,11].

3.5 Experiment

To verify our abstract echo state network, we empirically evaluated the perfor-
mance of the abstract and classical approach on the Mackey-Glass [6] and Santafe
D [1] datasets in open- and closed-loop setups using different noise amplitudes.

The Mackey-Glass equation is a delay differential equation, which can exhibit
chaotic dynamics.

xk+1 = cxk +
axk−d

b + xe
k−d

(7)

For our experiments we chose the following parameters a = 0.2, b = 0.8,
c = 0.9, d = 23 and e = 10. The Mackey-Glass is depicted in Fig. 3. The
training-evaluation split is 8000:2000.

The Santafe D dataset is a univariate, multi-dimensional nonlinear time series
generated on a computer, and contains 100’000 observations for training and 500
observations for evaluation. The Santafe D time-series is shown in Fig. 3. The
training-evaluation split is 10000:500.
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To test the performance of a closed-loop model for both datasets we train
the model to predict the next value of the respective train time-series, and then
create predictions using the evaluation split with noise du added. The noise
amplitudes are ranging from 0.0 to 0.99 in 0.01 increments.

For an open-loop model we train the ESN in the same fashion as in the
closed-loop but initiate the evaluation using the first value of the respective
time-series, and then reuse the output of the ESN as input. We also add noise
du with amplitudes ranging from 0.0 to 0.99 in 0.01 increments.

The open and closed-loop setup is depicted in Fig. 4. In contrast to the
open setup, the closed feedback loop has an additional source of noise, due to
imprecision and errors on the output side, which is fed back to the input.

The classical ESNs are trained as they are, whereas for the abstract versions,
we set the target max deviation dy to du/10, i.e. the noise amplitude divided by
10.

Hyperparameters were selected based on a grid search with the parameter
ranges for α ∈ [0.0, 1.0], spectral radius ∈ [0.1, 1.1] and connectivity ∈ [0.1, 1.0]
for each dataset. The selected hyperparameters for the respective dataset are
given in Table 1.

Table 1. ESN hyperparameters used in the experiments for the respective datasets.

Dataset α Spectral radius Connectivity

Mackey-Glass 0.4 1.1 0.5

Santafe D 0.8 0.1 0.2

In addition, each experiment was run for 100 times, to account for uncer-
tainty.

4 Results and Discussion

To measure the performance of the ESNs we used the mean-square-error (MSE)
defined as in Eq. 8, with n representing the number of samples, ŷ the ground
truth and y the model prediction.

MSE =
1
n

∑
(ŷi − yi)2 (8)

The averaged MSE for the experiments on both datasets are shown in Tables
2 and 3, respectively. In an open-loop setup and while noise is absent the abstract
and classical network perform similar, whereas with increasing noise amplitude
the performance of the classical network degrades quickly, while the abstract
network’s performance stays relatively stable. This is illustrated in Subfigures
(a) of Figs. 5 and 6. Both types of the network perform significantly worse in
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Fig. 3. The first 1000 values of the time-series as used in the experiments. We use
a discretized Mackey-Glass time-series (a), which is a nonlinear, delayed differential
equation, the Santafe D time-series (b) on the other hand is a computer-generated
univariate, multi-dimensional nonlinear dataset.

Fig. 4. Depiction of an ESN in an open-loop (a) and closed-loop (b) setup. In the
closed-loop configuration, the output of the ESN is fed back to the input, whereas in
the open-loop the output is not reused.

a close loop setup, with the Santafe D dataset being an extreme case, as the
classical network diverged to infinity, as seen in Subfigures (b) of Figs. 5 and 6.

The failure of the classical approach creating a working set of weights for a
closed-loop in our setup is most likely due to the noise introduced to the input
by errors on the output side. This also explains why our proposed methods
work better in this setting, as it is inherently more robust against noisy inputs.
Its robustness stems from the lower variance in the size of the output weights.
Figure 7 shows differences of up to one magnitude for the Mackey-Glass dataset,
whereas differences of up to four magnitudes can be observed for the Santafe
D dataset, as shown in Fig. 8. Evidently, our proposed training regime leads to
weights closer to zero, which increases the robustness against noisy inputs when
using ESNs.
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Table 2. Excerpt of the results for the Mackey-Glass time-series, showing the averaged
MSE (over 100 runs), standard deviation and achieved min-/max-MSE.

Model Noise amplitude Average MSE Std Min Max

Abstract open 0 0.232 2.790e−17 0.232 0.232

Classical open 0 0.232 1.116e−16 0.232 0.232

Abstract open 0.1 0.230 2.328e−4 0.229 0.230

Classical open 0.1 0.237 2.397e−4 0.236 0.237

Abstract open 0.5 0.240 1.169e−3 0.237 0.243

Classical open 0.5 0.345 2.001e−3 0.341 0.351

Abstract open 0.99 0.257 2.306e−03 0.251 0.262

Classical open 0.99 0.673 6.657e−02 0.661 0.694

Abstract closed 0 inf – inf inf

Classical closed 0 inf – inf inf

Abstract closed 0.1 0.185 4.389e−3 0.171 0.197

Classical closed 0.1 inf – inf inf

Abstract closed 0.5 1.389 0.300 0.562 2.137

Classical closed 0.5 inf – inf inf

Abstract closed 0.99 1.480 0.201 0.990 1.921

Classical closed 0.99 inf – inf inf

Table 3. Excerpt of the results for the Santafe D time-series. Showing the averaged
MSE (over 100 runs), standard deviation and achieved min-/max-MSE.

Model Noise amplitude Average MSE Std Min Max

Abstract open 0 0.109 2.790e−17 0.109 0.109

Classical open 0 0.108 5.579e−17 0.108 0.108

Abstract open 0.1 0.103 5.371e−4 0.101 0.101

Classical open 0.1 0.111 6.668e−4 0.110 0.112

Abstract open 0.5 0.123 2.673e−3 0.115 0.130

Classical open 0.5 0.174 5.207e−3 0.160 0.190

Abstract open 0.99 0.189 6.211e−3 0.172 0.209

Classical open 0.99 0.364 0.017 0.327 0.417

Abstract closed 0 0.088 5.579e−17 0.088 0.088

Classical closed 0 0.098 0 0.098 0.098

Abstract closed 0.1 0.072 2.588e−3 0.066 0.079

Classical closed 0.1 inf – inf inf

Abstract closed 0.5 0.206 2.439e−2 0.155 0.261

Classical closed 0.5 inf – inf inf

Abstract closed 0.99 0.625 9.851e−2 0.425 0.837

Classical closed 0.99 inf – inf inf
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Fig. 5. MSE attained by a classical and abstract echo state network at various noise
levels for the Mackey-Glass time-series, averaged over 100 runs. In an open-loop (a)
setup the abstract echo state network surpasses the classical one when noise is present
(amplitude ≥ 0.01). In a closed-loop (b) setting, on the other hand, the classical echo
state network diverged, thus no data is shown for the classical one.

Fig. 6. MSE attained by a classical and abstract echo state network at various noise
levels for the Santafe D time-series, averaged over 100 runs. In a closed-loop (b) setting
the classical echo state network diverged for amplitudes ≥ 0.04, thus no data is shown
for the classical one. Even in an open-loop (a) setting the abstract echo state network
performs better at all noise levels.
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Fig. 7. Comparison of (a) classical and (b) abstract (for a noise amplitude of δ = 0.3)
weights for our network on a logarithmic scale, for the Mackey-Glass time-series.

Fig. 8. Comparison of (a) classical and (b) abstract (for a noise amplitude of δ = 0.3)
weights for our network on a logarithmic scale, for the Santafe D time-series.

5 Conclusion

We have introduced a new training regime to ESNs, improving the robust-
ness against noise on the input side, by leveraging abstract interpretation. The
increased robustness not only increases the performance if noisy inputs are
present but also in a closed-loop setup, as imprecisions and errors of the output,
which will be fed back to the input in this setting, are a form of noise. In general
classical echo state networks tend to be better, if there is no noise present on
the input side, but the performance of networks trained with our new training
regime degrades significantly slower when noise is added.

An interesting direction to explore in the future is the applicability of abstract
interpretation to physical reservoir computing systems. Although abstract
domains, as they were introduced, are hardly directly applicable to physical
systems, we can still use them in simulations. This would allow us to train such
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systems in simulations, and test if there is a gain in robustness within the simu-
lated environment and then in a final step use the trained readout layer with a
physical implementation of the simulated system.

Another major future research endeavour is the exploration of similar train-
ing regimes for other types of recurrent neural networks. Further, the abstract
interpretation can be refined using affine arithmetic, allowing for tighter bound-
aries of the approximation.

Progress in these directions will facilitate the usage and safety of recurrent
neural networks in real-world applications and pave the way for a safer world.
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13. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS 2018NIPS 2018, pp. 10825–10836.
Curran Associates Inc., Red Hook (2018)
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Abstract. Minimal complexity machines (MCMs) minimize the VC
(Vapnik-Chervonenkis) dimension to obtain high generalization abilities.
However, because the regularization term is not included in the objective
function, the solution is not unique. In this paper, to solve this problem,
we propose fusing the MCM and the standard support vector machine
(L1 SVM). This is realized by minimizing the upper bound on the deci-
sion function for the training data in the L1 SVM. We call the machine
Minimum complexity L1 SVM (ML1 SVM). We compare the ML1 SVM
with other types of SVMs including the L1 SVM using several bench-
mark data sets and show that the ML1 SVM performs comparable to or
better than the L1 SVM.

1 Introduction

In the support vector machine (SVM) [1,2], training data are mapped into the
high dimensional feature space, and in that space, the separating hyperplane is
determined so that the nearest training data of both classes are maximally sepa-
rated. Here, the distance between a data sample and the separating hyperplane
is called margin.

Motivated by the success of SVMs in real world applications, many SVM-like
classifiers have been developed to improve the generalization ability. The ideas
of extensions lie in incorporating the data distribution (or margin distribution)
to the classifiers.

To cope with this, one approach proposes kernels based on the Mahalanobis
distance [3,4]. Another approach reformulates the SVM so that the margin is
measured by the Mahalanobis distance [5,6].

Yet another approach controls the overall margins instead of the minimum
margin. In [7], a large margin distribution machine (LDM) is proposed, in which
the average margin is maximized and the margin variance is minimized. Although
the generalization ability is better than that of the SVM, the number of hyper-
parameters is larger than that of the SVM. To cope with this problem, in [8],
the unconstrained LDM (ULDM) is proposed, which has the equal number of
hyperparameters and which has the generalization ability comparable to that of
the LDM and the SVM.

c© Springer Nature Switzerland AG 2020
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The generalization ability of the SVM can be analyzed by the VC (Vapnik-
Chervonenkis) dimension [1] and the maximum generalization ability is achieved
by minimizing the radius-margin ratio, where the radius is the minimum radius
of the hypersphere that encloses all the training data in the feature space.

If the center of the hypersphere is assumed to be at the origin, the radius of
the hypersphere can be minimized for a given feature space as discussed in [9].
The minimal complexity machine (MCM) is derived based on this assumption. In
the MCM, the VC dimension is minimized by minimizing the upper bound of the
soft-margin constraints for the decision function. Because the regularization term
is not included, the MCM is trained by linear programming. The generalization
performance of the MCM is shown to be superior to that of the SVM, but
according to our analysis [10], the solution is non-unique and the generalization
ability is not better than that of the SVM. The problem of non-uniqueness is
shown to be solved by adding the regularization term in the objective function
of the MCM, which is a fusion of the MCM and the linear programming SVM
(LP SVM) called MLP SVM.

In this paper we propose fusing the MCM with the standard SVM, i.e.,
L1 SVM, to improve the generalization ability of the L1 SVM. We call the
fused architecture minimal complexity L1 SVM (ML1 SVM). The ML1 SVM
is obtained by adding the upper bound on the decision function and the upper
bound minimization term in the objective function of the L1 SVM. We derive
the dual form of the ML1 SVM with one set of variables associated with the
soft-margin constraints and the other set, upper-bound constraints. We then
decompose the dual ML1 SVM into two subproblems: one for the soft-margin
constraints, which is similar to the dual L1 SVM, and the other for the upper-
bound constraints. These subproblems neither include the bias term nor the
upper bound. Thus, for a convergence check, we derive the exact KKT (Karush-
Kuhn-Tucker) conditions that do not include the bias term and the upper bound.
The second subproblem is different from the first subproblem in that it includes
the inequality constraint on the sum of dual variables. To remove this, we change
the inequality constraint into two equality constraints and called this architecture
ML1v SVM.

In Sect. 2, we summarize the architectures of L1 SVM and the MCM. In
Sect. 3, we discuss the architectures of the ML1 SVM and ML1v SVM. In Sect. 4,
we compare the generalization ability of the proposed classifiers with other SVM-
like classifiers using two-class and multiclass problems.

2 L1 Support Vector Machines and Minimal Complexity
Machines

In this section, we briefly explain the architectures of the L1 SVM and the MCM
[9]. Then we discuss the problem of non-unique solutions of the MCM and one
approach to solving the problem [10].



Minimal Complexity Support Vector Machines 91

2.1 L1 Support Vector Machines

Let the M training data and their labels be {xi, yi}(i = 1, . . . ,M), where xi

is an n-dimensional input vector and yi = 1 for Class 1 and −1 for Class 2.
The input space is mapped into the l-dimensional feature space by the mapping
function φ(x) and in the feature space the following separating hyperplane is
constructed:

w�φ(x) + b = 0, (1)

where w is the l-dimensional constant vector and b is the bias term.
The primal form of the L1 SVM is given by

min Q(w, b, ξ) =
1
2

‖w‖2 + C

M∑

i=1

ξi (2)

s.t. yi (w� φ(xi) + b) + ξi ≥ 1, ξi ≥ 0, i = 1, . . . ,M, (3)

where ξ = (ξ1, . . . , ξM )�, ξi is the slack variable for xi, and C (> 0) is the
margin parameter that determines the trade-off between the maximization of the
margin and minimization of the classification error. Inequalities (3) are called
soft-margin constraints.

2.2 Minimal Complexity Machines

The VC dimension is a measure for estimating the generalization ability of a
classifier and lowering the VC dimension leads to realizing a higher generaliza-
tion ability. For an SVM-like classifier with the minimum margin δmin, the VC
dimension D is bounded by [1]

D ≤ 1 + min
(
R2/δ2min, l

)
, (4)

where R is the radius of the smallest hypersphere that encloses all the training
data.

In training the L1 SVM, both R and l are not changed. In the LS SVM,
where ξi are replaced with ξ2i in (2) and the inequality constraints, with equality
constraints in (3), although both R and l are not changed by training, the second
term in the objective function works to minimize the square sums of yi f(xi)−1.
Therefore, like the LDM and ULDM, this term works to condense the margin
distribution in the direction orthogonal to the separating hyperplane.

The MCM that minimizes the VC-dimension, i.e., R/δmin in (4) is

min Q(α, h, ξ, b) = h + C

M∑

i=1

ξi (5)

s.t. h ≥ yi

⎛

⎝
M∑

j=1

αj Kij + b

⎞

⎠ + ξi ≥ 1, i = 1, . . . M, (6)
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where h is the upper bound of the soft-margin constraints and Kij = K(xi,xj) =
φ� (xi)φ(xj). Here, the mapping function φ(x) in (1) is [11]

φ(x) = (K11, . . . ,K1M )�, (7)

and w = α. The MCM can be solved by linear programming.
Because the upper bound h in (6) is minimized in (5), the separating hyper-

plane is determined so that the maximum distance between the training data
and the separating hyperplane is minimized.

The MCM, however, does not explicitly include the term related to the mar-
gin maximization. This makes the solution non-unique and unbounded.

To make the solution unique, in [10] the MCM and the LP SVM are fused
and the resulting classifier is called minimal complexity LP SVM (MLP SVM):

min Q(α, h, ξ, b) = Ch h +
M∑

i=1

(Cα |αi| + C ξi) (8)

s.t. h ≥ yi

⎛

⎝
M∑

j=1

αj Kij + b

⎞

⎠ + ξi ≥ 1, i = 1, . . . M, (9)

where Ch is the positive parameter and Cα = 1. Deleting Ch h in (8) and upper
bound h in (9), we obtain the LP SVM. Setting Ch = 1 and Cα = 0 in (8), we
obtain the MCM.

3 Minimal Complexity L1 Support Vector Machines

In this section, we discuss the architecture and optimality conditions of the
proposed classifiers.

3.1 Architecture

Similar to the MLP SVM, here we propose fusing the MCM given by (5) and
(6) and the L1 SVM given by (2) and (3):

min Q(w, b, h, ξ) = Ch h +
1
2

‖w‖2 + C
M∑

i=1

ξi (10)

s.t. yi (w� φ(xi) + b) + ξi ≥ 1, ξi ≥ 0, (11)
h ≥ yi (w� φ(xi) + b), i = 1, . . . , M, (12)
h ≥ 1, (13)

where ξ = (ξ1, . . . , ξM )�, Ch is the positive parameter to control the volume
that the training data occupy, and h is the upper bound of the constraints. The
upper bound defined by (6) is redefined by (12) and (13), which exclude ξi. This
makes the KKT conditions for the upper bound simpler. We call (12) the upper
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bound constraints and the above classifier minimum complexity L1 SVM (ML1
SVM).

In the following, we derive the dual problem of the ML1 SVM. Introducing
the nonnegative Lagrange multipliers αi, βi, and η, we obtain

Q(w, b, h, ξ,α,β, η) = Ch h +
1
2

‖w‖2 −
M∑

i=1

αi

(
yi (w� φ(xi) + b) − 1 + ξi

)

+C

M∑

i=1

ξi −
M∑

i=1

βi ξi −
M∑

i=1

αM+i

(
h − yi (w� φ(xi) + b)

) − (h − 1) η, (14)

where α = (α1, . . . , α2M )�, β = (β1, . . . , βM )�.
For the optimal solution, the following KKT conditions are satisfied:

∂Q(w, b, h, ξ,α,β, η)
∂w

= 0,
∂Q(w, b, h, ξ,α,β, η)

∂h
= 0, (15)

∂Q(w, b, h, ξ,α,β, η)
∂b

= 0,
∂Q(w, b, h, ξ,α,β, η)

∂ξ
= 0, (16)

αi (yi (w� φ(xi) + b) − 1 + ξi) = 0, αi ≥ 0, (17)
αM+i

(
h − yi (w� φ(xi) + b)

)
= 0, αM+i ≥ 0, (18)

βi ξi = 0, βi ≥ 0, ξi ≥ 0, i = 1, . . . , M, (19)
(h − 1) η = 0, h ≥ 1, η ≥ 0, (20)

where 0 is the zero vector whose elements are zero. Equations (17) to (20) are
called KKT complementarity conditions.

Using (14), we reduce (15) and (16), respectively, to

w =
M∑

i=1

(αi − αM+i) yi φ(xi),
M∑

i=1

αM+i = Ch − η, (21)

M∑

i=1

(αi − αM+i) yi = 0, αi + βi = C, i = 1, . . . ,M. (22)

Substituting (21) and (22) into (14), we obtain the following dual problem:

max Q(α) =
M∑

i=1

(αi − αM+i) − 1
2

M∑

i,j=1

(αi − αM+i)

×(αj − αM+j) yi yj K(xi,xj) (23)

s.t.
M∑

i=1

yi (αi − αM+i) = 0, (24)

Ch ≥
M∑

i=1

αM+i, (25)

C ≥ αi ≥ 0, Ch ≥ αM+i ≥ 0, i = 1, . . . , M. (26)
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If we delete variables αM+i and Ch from the above optimization problem, we
obtain the dual problem of the original L1 SVM.

For the solution of (23) to (26), positive αi and αM+j are support vectors.
We consider decomposing the above problem into two subproblems: 1) opti-

mizing αi (i = 1, . . . , M) and 2) optimizing αM+i (i = 1, . . . , M). To make this
possible, we eliminate the interference between αi and αM+i in (24) by

M∑

i=1

yi αi = 0,

M∑

i=1

yi αM+i = 0. (27)

Then the optimization problem given by (23) to (26) is decomposed into the
following two subproblems:

Subproblem 1: Optimization of αi

max Q(α0) =
M∑

i=1

(αi − αM+i) − 1
2

M∑

i,j=1

(αi − αM+i)

×(αj − αM+j) yi yj K(xi,xj) (28)

s.t.
M∑

i=1

yi αi = 0, (29)

C ≥ αi ≥ 0 for i = 1, . . . , M, (30)

where α0 = (α1, . . . , αM )�.

Subproblem 2: Optimization of αM+i

max Q(αM ) =
M∑

i=1

(αi − αM+i) − 1
2

M∑

i,j=1

(αi − αM+i)

×(αj − αM+j) yi yj K(xi,xj) (31)

s.t.
M∑

i=1

yi αM+i = 0, (32)

Ch ≥
M∑

i=1

αM+i, (33)

Ch > αM+i ≥ 0, i = 1, . . . , M, (34)

where αM = (αM+1, . . . , α2M )�. Here we must notice that αM+i �= Ch. If
αM+i = Ch, from (32), at least

∑

j =1,...,M, yj �=yi

αM+j = Ch (35)

is satisfied. This contradicts (33).
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We solve Subproblems 1 and 2 alternatingly until the solution converges.
Subproblem 1 is very similar to the L1 SVM and can be solved by the SMO
(Sequential minimal optimization) combined with Newton’s method [12]. Sub-
problem 2, which includes the constraint (33) can also be solved by a slight
modification of the SMO combined with Newton’s method.

3.2 KKT Conditions

To check the convergence of Subproblems 1 and 2, we use the KKT complemen-
tarity conditions (17) to (20). However, variables h and b, which are included in
the KKT conditions, are excluded from the dual problem. Therefore, as with the
L1 SVM [13], to make an accurate convergence test, the exact KKT conditions
that do not include h and b need to be derived.

We rewrite (17) as follows:

αi (yi b − yi Fi + ξi) = 0, i = 1, . . . ,M, (36)

where

Fi = yi −
M∑

j=1

yj (αj − αM+j)K(xi,xj). (37)

We can classify the conditions of (36) into the following three cases:

1. αi = 0. Because yi b − yi Fi + ξi ≥ 0 and ξi = 0, yi b ≥ yi Fi, namely, b ≥ Fi

if yi = 1; b ≤ Fi if yi = −1.
2. C > αi > 0. Because βi > 0, ξi = 0 is satisfied. Therefore, b = Fi.
3. αi = C. Because βi = 0, ξi ≥ 0 is satisfied. Therefore, yi b ≤ yi Fi, namely,

b ≤ Fi if yi = 1; b ≥ Fi if yi = −1.

Then the KKT conditions for (36) are simplified as follows:

F̄i ≥ b ≥ F̃i, i = 1, . . . , M, (38)

where

F̃i = Fi if (yi = 1, αi = 0), C > αi > 0 or (yi = −1, αi = C), (39)
F̄i = Fi if (yi = −1, αi = 0), C > αi > 0 or (yi = 1, αi = C). (40)

To detect the violating variables, we define blow and bup as follows:

blow = max
i

F̃i, bup = min
i

F̄i. (41)

If the KKT conditions are satisfied,

bup ≥ blow. (42)

The bias term is estimated to be

be =
1
2
(bup + blow), (43)

where be is the estimate of the bias term using (17).
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Likewise, using (37), (18) becomes

αM+i (h + yi Fi − yi b − 1) = 0, i = 1, . . . , M. (44)

Then the conditions for (18) are rewritten as follows:

1. αM+i = 0. From h + yi Fi − yi b − 1 ≥ 0, we have yi b − h ≤ yi Fi − 1, namely,
b − h ≤ Fi − 1 if yi = 1; b + h ≥ Fi + 1 if yi = −1.

2. Ch > αM+i > 0. yi b − h = yi Fi − 1, namely, b − h = Fi − 1 if yi = 1;
b + h = Fi + 1 if yi = −1.

The KKT conditions for (18) are simplified as follows:

if yi = −1, F̄i
− + 1 ≥ b− ≥ F̃i

−
+ 1,

if yi = 1, F̄i
+ − 1 ≥ b+ ≥ F̃i

+ − 1, i = 1, . . . , M, (45)

where b− = b + h, b+ = b − h, and

F̃i
−

= Fi + 1 if yi = −1, (46)

F̄i
− = Fi + 1 if yi = −1, Ch > αM+i > 0, (47)

F̃i
+

= Fi − 1 if yi = 1, Ch > αM+i > 0, (48)

F̄i
+ = Fi − 1 if yi = 1. (49)

To detect the violating variables, we define b−
low, b+low, b−

up, and b+up as follows:

b−
low = max

i
F̃i

−
, b+low = max

i
F̃i

+
,

b−
up = min

i
F̄i

−
, b+up = min

i
F̄i

+
.

(50)

In general, the distributions of Classes 1 and 2 data are different. Therefore,
the upper bounds of h for Classes 1 and 2 are different. This means that either of
b−
up (F̄i

−) and b+low (F̃i
+

) may not exist. But because of (32), both classes have at
least one positive αM+i each, and because of (44), the values of h for both classes
can be different. This happens because we separate (24) into two equations as in
(27). Then, if the KKT conditions are satisfied, both of the following inequalities
hold

b−
up ≥ b−

low, b+up ≥ b+low. (51)

From the first inequality, the estimate of h, h−
e for Class 2, is given by

h−
e = −be +

1
2
(b−

up + b−
low). (52)

From the second inequality, the estimate of h, h+
e for Class 1, is given by

h+
e = be − 1

2
(b+up + b+low). (53)
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3.3 Variant of Minimal Complexity Support Vector Machines

Subproblem 2 of the ML1 SVM is different from Subproblem 1 in that the former
includes the inequality constraint given by (33). This makes the solution process
makes more complicated. In this section, we consider making the solution process
similar to that of Subproblem 1.

Solving Subproblem 2 results in obtaining h+
e and h−

e . We consider assigning
separate variables h+ and h− for Classes 1 and 2 instead of a single variable h.
Then the complementarity conditions for h+ and h− are

(h+ − 1) η+ = 0, h+ ≥ 1, η+ ≥ 0, (h− − 1) η− = 0,

h− ≥ 1, η− ≥ 0, (54)

where η+ and η− are the Lagrange multipliers associated with h+ and h−,
respectively. To simplify Subproblem 2, we assume that η+ = η− = 0. This makes
the equations corresponding to (33) equality constraints. Then the optimization
problem given by (31) to (34) becomes

max Q(αM ) =

M∑

i=1

αi − 1

2

M∑

i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi,xj) (55)

s.t.

M∑

yi=1,i=1

αM+i = Ch,

M∑

yi=−1,i=1

αM+i = Ch, (56)

C ≥ αi ≥ 0, Ch ≥ αM+i ≥ 0, i = 1, . . . , M. (57)

Here, (32) is not necessary because of (56). We call the above architecture ML1v
SVM.

For the solution of the ML1 SVM, the same solution is obtained by the ML1v
SVM with the Ch value given by

Ch =
∑

i=1,...,M,yi=1

αM+i =
∑

i=1,...,M,yi=−1

αM+i. (58)

However, the reverse is not true, namely, the solution of the ML1v SVM may
not be obtained by the ML1 SVM. As the Ch value becomes large, the value
of η becomes positive for the ML1 SVM, but for the ML1v SVM, the values of
αM+i are forced to become larger. But as the following computer experiments
show, the performance difference is small.

4 Computer Experiments

In this section, we compare the generalization performance of the ML1v SVM
and ML1 SVM with the L1 SVM, MLP SVM [10], LS SVM, and ULDM [8] using
two-class and multiclass problems.
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4.1 Comparison Conditions

We determined the hyperparameter values using the training data by fivefold
cross-validation, trained the classifier with the determined hyperparameter val-
ues, and evaluate the accuracy for the test data.

We trained the ML1v SVM, ML1 SVM, and L1 SVM by SMO combined with
Newton’s method [12]. We trained the MLP SVM by the simplex method and
the LS SVM and ULDM by matrix inversion.

Because RBF kernels perform well for most pattern classification applica-
tions, we used RBF kernels: K(x,x′) = exp(−γ‖x − x′‖2/m), where γ is the
parameter to control the spread of the radius, and m is the number of inputs.

In cross-validation, we selected the γ values from
{
0.01, 0.1, 0.5, 1, 5, 10, 15,

20, 50, 100, 200
}

and the C and Ch values from
{
0.1, 1, 10, 50, 100, 500, 1000,

2000
}
. For the ULDM, C value was selected from

{
10−12, 10−10, 10−8, 10−6,

10−4, 10−3, 10−2, 0.1
}
.

For the L1 SVM, LS SVM, and ULDM, we determined the γ and C values
by grid search. For the ML1v SVM, ML1 SVM, and MLP SVM, to shorten
computation time, first we determined the γ and C values with Ch = 1 (Ch = 0.1
for the MLP SVM) by grid search and then we determined the Ch value by line
search fixing the γ and C values with the determined values.

After model selection, we trained the classifier with the determined hyper-
parameter values and calculated the accuracy for the test data. For two-class
problems we calculated the average accuracies and their standard deviations,
and performed Welch’s t test with the confidence level of 5%.

4.2 Two-Class Problems

Table 1 lists accuracies for the two-class problems. In the first column, I/Tr/Te
denotes the numbers of input variables, training data, and test data. Except
for the image and splice problems, each problem has 100 training and test data
pairs. For the image and splice problems, 20 pairs.

In the table, for each classifier and each classification problem, the average
accuracy and the standard deviation are shown. For each problem the best aver-
age accuracy is shown in bold and the worst, underlined. The “+” and “−”
symbols at the accuracy show that the ML1v SVM is statistically better and
worse than the classifier associated with the attached symbol, respectively. The
“Average” row shows the average accuracy of the 13 problems for each classifier
and “B/S/W” denotes the number of times that the associated classifier showed
the best, the second best, and the worst accuracies. The “W/T/L” row denotes
the number of times that the ML1v SVM is statistically better than, comparable
to, and worse than the associated classifier.

According to the “W/T/L” row, the ML1v SVM is statistically better than
the MLP SVM but is comparable to other classifiers. From the “Average” mea-
sure, the ULDM is the best and the ML1v SVM, the second. However, the
differences of the measures among the ML1v SVM, ML1 SVM, and L1 SVM are
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Table 1. Accuracies of the test data for the two-class problems

Problem I/Tr/Te ML1v SVM ML1 SVM L1 SVM MLP SVM LS SVM ULDM

Banana 2/400/4900 89.11± 0.70 89.18± 0.70 89.17± 0.72 89.07± 0.73 89.17± 0.66 89.12± 0.69

Cancer 9/200/77 73.12± 4.43 73.03± 4.45 73.03± 4.51 72.81± 4.59 73.13± 4.68 73.70± 4.42

Diabetes 8/468/300 76.33± 1.94 76.17± 2.25 76.29± 1.73 76.05± 1.74 76.19± 2.00 76.51± 1.95

Flare-solar 9/666/400 66.99± 2.16 66.98± 2.14 66.99± 2.12 66.62± 3.10 66.25+± 1.98 66.28+± 2.05

German 20/700/300 75.97± 2.21 75.91± 2.03 75.95± 2.24 75.63± 2.57 76.10± 2.10 76.12± 2.3

Heart 13/170/100 82.96± 3.25 82.84± 3.26 82.82± 3.37 82.52± 3.27 82.49± 3.60 82.57± 3.64

Image 18/1300/1010 97.27± 0.46 97.29± 0.44 97.16± 0.41 96.47+± 0.87 97.52± 0.54 97.16± 0.68

Ringnorm 20/400/7000 97.97± 1.11 98.12± 0.36 98.14± 0.35 97.97± 0.37 98.19± 0.33 98.16± 0.35

Splice 60/1000/2175 88.99± 0.83 89.05± 0.83 88.89± 0.91 86.71+± 1.27 88.98± 0.70 89.16± 0.53

Thyroid 5/140/75 95.37± 2.50 95.32± 2.41 95.35± 2.44 95.12± 2.38 95.08± 2.55 95.15± 2.27

Titanic 3/150/2051 77.40± 0.79 77.37± 0.81 77.39± 0.74 77.41± 0.77 77.39± 0.83 77.46± 0.91

Twonorm 20/400/7000 97.38± 0.25 97.36± 0.28 97.38± 0.26 97.13+± 0.29 97.43± 0.27 97.41± 0.26

Waveform 21/400/4600 89.67± 0.75 89.72± 0.73 89.76± 0.66 89.39+± 0.53 90.05−± 0.59 90.18−± 0.54

Average 85.27 85.26 85.26 84.84 85.23 85.31

B/S/W 3/1/0 1/3/1 1/2/0 0/1/9 3/4/3 6/1/0

W/T/L — 0/13/0 0/13/0 4/9/0 1/11/1 1/11/1

small. From the “B/S/W” measure, the ULDM is the best and the LS SVM is
the second best.

4.3 Multiclass Problems

Table 2 shows the accuracies for the ten multiclass problems. The symbol “C” in
the first column denotes the number of classes. Unlike the two-class problems,
each multiclass problem has only one training and test data pair.

We used fuzzy pairwise (one-vs-one) classification for multiclass problems
[2]. In the table, for each problem, the best accuracy is shown in bold, and the
worst, underlined. For the MLP SVM, the accuracies for the thyroid, MNIST,
and letter problems were not available.

Among the ten problems, the accuracies of the ML1v SVM and ML1 SVM
were better than or equal to those of the L1 SVM for nine and seven problems,

Table 2. Accuracies of the test data for the multiclass problems

Problem I/C/Tr/Te ML1v SVM ML1 SVM L1 SVM MLP SVM LS SVM ULDM

Numeral 12/10/810/820 [2] 99.76 99.76 99.76 99.27 99.15 99.39

Thyroid 21/3/3772/3428 [14] 97.23 97.26 97.26 — 95.39 95.57

Blood cell 13/12/3097/3100 [2] 93.55 93.19 93.16 93.36 94.23 94.61

Hiragana-50 50/39/4610/4610 [2] 98.98 99.46 99.00 98.96 99.48 98.92

Hiragana-13 13/38/8375/8356 [2] 99.79 99.89 99.79 99.90 99.87 99.90

Hiragana-105 105/38/8375/8356 [2] 100.00 100.00 100.00 100.00 100.00 100.00

Satimage 36/6/4435/2000 [14] 91.85 91.85 91.90 91.10 91.95 92.25

USPS 256/10/7291/2007 [15] 95.42 95.47 95.27 95.17 95.47 95.42

MNIST 784/10/10000/60000 [16] 96.96 96.96 96.55 — 96.99 97.03

Letter 16/26/16000/4000 [14] 97.95 98.03 97.85 — 97.88 97.75

Average 97.15 97.19 97.05 — 97.04 97.08

B/S/W 2/1/1 5/1/0 3/0/3 2/0/2 3/3/2 5/0/2
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respectively. In addition, the best average accuracy was obtained for the ML1
SVM and the second best, the ML1v SVM. This is very different from the two-
class problems where the difference was very small.

5 Conclusions

In this paper, to solve the problem of the non-unique solution of the MCM, and
to improve the generalization ability of the L1 SVM, we fused the MCM and the
L1 SVM. We derived two dual subproblems: the first subproblem corresponds to
the L1 SVM and the second subproblem corresponds to minimizing the upper
bound. We further modified the second subproblem by converting the inequality
constraint into two equality constraints. We call this architecture ML1v SVM
and the original architecture, ML1 SVM.

According to computer experiments for two-class problems, the average accu-
racy of the ML1v SVM is statistically comparable to that of the ML1 SVM and
L1 SVM. For multiclass problems, the ML1v SVM and ML1 SVM generalized
better than the L1 SVM.
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Abstract. Named Entity Disambiguation (NED) is a crucial task in
many Natural Language Processing applications such as entity linking,
record linkage, knowledge base construction, or relation extraction, to
name a few. The task in NED is to map textual variations of a named
entity to its formal name. It has been shown that parameter-less models
for NED do not generalize to other domains very well. On the other
hand, parametric learning models do not scale well when the number of
formal names expands above the order of thousands or more. To tackle
this problem, we propose a deep architecture with superior performance
on NED and introduce a strategy to scale it to hundreds of thousands
of formal names. Our experiments on several datasets for alias detection
demonstrate that our system is capable of obtaining superior results with
a large margin compared to other state-of-the-art systems.

Keywords: Named Entity Disambiguation · Alias detection · Deep
learning

1 Introduction

Named Entity Disambiguation (NED) [14,27] is the task of linking textual varia-
tions of Named Entities (NE)1 to their target names, which are usually provided
as a list of formal names. For instance, while recognizing “Philip Morris” as
an NE is the job of a Named Entity Recognition (NER) system, associating
it to “Philip Morris International Inc. (PMI)” in a list of formal names as a
means of disambiguation is performed via NED. The list of formal names often
contains many other names such as “Phil Moors, Morris Industries, ...” which
are very similar to the correct formal name and should not be mistaken with
it. The number of formal names, which may go to several hundred thousands
or even millions, makes NED a challenging task. Character shift, abbreviation,
word shift, typos, and use of nicknames are other challenges in NED.

There are two broad categories of approaches to address NED, namely classic
and modern. The classic or parameter-less approach [17,21] is simply a textual
similarly function such as the Levenshtein distance, Cosine similarity, or longest

1 Named Entities are well-known places, people, organizations, ...

c© Springer Nature Switzerland AG 2020
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common subsequent [10] that computes the pairwise similarity score for all avail-
able formal names given each source name.

The time complexity of these models are mostly of the order of O(f(mn)), m
and n being the number of the source and formal names, respectively, and f(.)
being a linear function, which makes them quite fast. Moreover, they are highly
parallelizable since computing the score of a batch does not affect the next batch
scores. However, the performance of these models severely suffers when porting
to new domains [3,6,28].

The modern or parametric learning models have better performance in work-
ing across domains through fine-tuning or transfer learning and are of the same
order of complexity except for f(.), which is often a more complex function. In
real-life NED systems, the number of formal names exceeds hundreds of thou-
sands or even million names, which makes a parametric pairwise comparison
difficult if not infeasible.

To address these issues, we integrate a deep learning model with a parameter-
less method of similarity assignment to break the limit on recognizing new
domains and simultaneously scaling the system to millions of names. To this
end, we train a term frequency-inverse document frequency (tf-idf) model on
a range of character n-grams of all names. The tf-idf model has two tasks; to
generate feature vectors for the deep learning model and to set a threshold for
limiting the formal names when using the system at inference time. We test the
system on four datasets for alias detection [27] and compare the results with
several baselines as well as a state-of-the-art NED system.

The motivation for this work for us is to solve a business need with a scalable
and efficient solution based on deep neural networks. Our business partner har-
vests around 100k news articles per day. They want to recognize company names
in the news and to link each of them to its formal name available in a proprietary
knowledge base which contains almost 80k formal names. The variance between
formal names and their usage in the news and the number of formal names in
addition to the sheer amount of news articles per day ask for an efficient and
scalable system for performing the task.

The main contributions of this work are a deep architecture for scoring entity
names and a strategy for leveraging this architecture to a large list of source
and/or formal names.

2 Related Work

Before the advent of modern and neural learning models, parameter-less compu-
tation of string similarity such as the Cosine similarity, the Levenshtein distance,
and the scores proposed by [24] were popular means of scoring formal names
given source names. Many of these works use a sort of word-level or character-
level n-gram features [20], syntactic features [7], or alignment features [25].

The earliest modern models of NED are based on feature engineering on a
classifier such as Support Vector Machines (SVM) [4] coupled with a sequence
decoder such as Conditional Random Fields (CRF) [9].
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Most advanced neural models today use CRFs for making inference but
instead of doing feature engineering manually, they use a form of Deep Neu-
ral Network (DNN) such as Long Short Term Memory (LSTM), Convolutional
Neural Network (CNN), or Gated Recurrent Unit (GRU) for automatic feature
learning [2,18].

Designing a NED system by feature engineering is a highly time-consuming
process, hence end-to-end neural systems capable of learning the features on their
own [16,29] are more approachable systems. All of these models use a form of
neural similarity function on top of the entity embeddings, mostly on the token-
level and in some studies on character-level [12]. However, the inference module
in these models is usually a pairwise scoring method [1] against all formal entities
given each source entity, which makes the inference unpractical for applications
with a large number of formal names.

NED can be performed jointly with NER in a way that the errors generated
by NER are recovered by NED. A common approach for jointly training NED
with NER is to use a NER system to extract entity mentions and use feature
engineering in a shared space to map the source entities to their formal names [19,
23]. The number of formal names is a limiting factor for these systems, too.

When the number of formal names is limited, NED is usually done as a
single NER process. State-of-the-art NER systems [11] use a form of pre-trained
embeddings that is fed into a form of Recurrent Neural Network (RNN). The
resulting representations are used to form a trellis for a Conditional Random
Field (CRF) [15] decoder which extracts the beginning and the end tokens of
named entities. However, when the number of formal names increases, besides
the lack of enough training data, the CRF turns intractable.

Finally, [22] proposed an architecture using a Multi-Layered Perceptron
(MLP) to recognize toponyms, and similar neural network architecture is used
by [27] for entity linking. Our work is similar to these two last studies, but
our pair-wise ranking architecture is coupled with a strategy that allows us to
leverage the disambiguation to millions of source and formal names by filtering
irrelevant formal names out.

3 Model Description

We model text similarity as a softly constrained pair-wise ranking problem.
Figure 1 schematically represents the model.

True Target Name, Source Name, and False Target Name are character-level
embedding layers for true, source, and false entity inputs. In the preprocessing
step, +Score is computed as the cosine of the angle between source and true
name vectors. Similarly, -Score is the cosine of the angle between source and
false name vectors. In this step, these two features are generated as tf-idf vectors
of the most frequent n-grams of characters in their strings. The n-grams are
limited to bi-, tri-, and four-grams.

As we observe in our experiments (see e.g. Table 2), these two scores have
a significant impact on the performance of the network. For instance, take the
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Fig. 1. The system architecture. The loss accepts two scores and three vectors to
compute the difference between true and false distance given a source name.

source name “president Reagan” as the true match for “Ronald Reagan”. Simply
depending on character representations would make “Nancy Reagan” a good
match for “president Reagan”, too, which would be wrong. However, injecting
the high cosine similarity of president Reagan and Ronald Reagan into the model
as a signal instructs it to weigh the importance of similarities in a more elaborate
way.

Character-level tf-idf vectors of source, true and false names are used as the
inputs to the next layer, the BiLSTM modules for computing the string-level
representations over which a column-wise max-pooling layer is applied. Then,
an attention layer similar to [30] is used to help the model concentrate on more
discriminating features.

The resulting vectors of the attention layers, as well as the scores, are inputs
to the loss function (Eq. 1). The loss function decreases the cost when the vectors
of true matches get similar to the vectors of ground truths and vice versa.

L = max{0,m − Score ∗ F (S,T+)

+ Score ∗ F (S,T−)} (1)

F =
1

1 + exp (−(v1 · v2))
∗ 1

1 + ‖v1,v2‖ (2)

Computing the similarity between two string at test time is done simply by
using the same network parameters to represent the source and all formal names
and computing their pair-wise similarities using F function (Eq. 2). However,
computing the F for all possible permutations of source vectors and formal
vectors is infeasible when one or both of the lists are big. Our strategy for scaling
up the NED is to use a window of the highest cosine scored formal names instead
of using all of them. Our experiment on 1000 random samples with unlimited
and limited formal names showed that the difference in none of the datasets is
statistically significant (Table 2).
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4 Experimental Results

We trained and evaluated our system on four publicly available datasets [27]
compiled for alias detection. We refer to the datasets as Wiki, Wiki-people,
Artists, and Patent Assignee. The Wiki dataset is compiled by assigning the
hyperlinked string in Wikipedia pages to the page they are pointing to, assuming
that Wikipedia pages are entities. The Wiki-people dataset is a subset of Wiki,
which contains only entities with the type “person” in the Freebase [5] knowl-
edge graph. The Artists dataset contains alternative names for music artists
extracted from MusicBrains [26]. Finally, the Patent Assignee dataset contains
the aliases of assignees in patent documents2. Table 1 displays some statistics of
these datasets.

Table 1. Number of strings, number of entities, the average number of mentions per
entity, and number of samples in the train, validation and test sets

Dataset Strings Entities Mentions Train Val Test

Wiki-people 1880000 1160000 1.83 51842 298 3946

Wiki 9320000 4640000 2.54 64341 288 3802

Artists 1830000 1160000 1.69 11566 265 3665

Patent Assignee 330000 227000 1.50 14365 290 3746

All entities in the training data including true and false names are used to
generate a list of most frequent n-gram characters limited to bi-, tri-, and four-
grams. The list is used to encode the strings into their tf-idf feature vectors.
The feature vectors are used for computing the cosine similarity, which is used
as a feature in the neural network as well as a means to generate windows of
false entities. False entities are sampled either randomly or from the window
with the highest cosine scores. As an ablation study, several window sizes for
false entities are selected to assess the impact of increasing false samples on the
system performance.

We use BiLSTM modules with 128 units with Adam [13] as the optimizer and
all dropouts set to 0.5. Since some source names may have more than one true
and false answers, the Mean Average Precision (MAP) is used as the evaluation
metric. We compare our system with two baselines, namely the plain Leven-
shtein and Jaro-Winkler distances and a state-of-the-art alias detection system
proposed by [27]. The results of these experiments are reported in Table 2. The
results show that our system outperforms the baselines by a large margin on
three out of four datasets.

2 There is a fifth dataset called “disease” which is compiled by the authors of [27].
This dataset was not publicly available at the time of authoring this work.
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5 Ablation

To investigate different aspects of the system we performed an ablation study
on several components of the system with the following variations. CW stands
for Current Work.

– CW-XN-ordered
To assess the impact of the window size or the number of false samples per
true one, we define three window sizes shown as 1N, 2N, and 5N in Table 2.
For instance ‘CW-5N-ordered’ means that for each true name we include 5
false names to train the system. At the inference time, there is no constraint
on the number of false or true entities.

– CW-2N-random
False names are selected either randomly or from a list of highest similar
names. We make sure that the list does not contain any true target name. The
distinction between these two experiments is shown by the suffix ‘-random’
or ‘-ordered’, respectively. The similarity scores used in this experiment are
computed in the preprocessing step and are the same scores as used as a
feature for training the model.

– CW-2N-no-score
An additional experiment is conducted by removing the scores from the objec-
tive function to show the gain of this parameter in the network performance.

– CW-2N-cosine
An experiment is conducted to assess the difference on the system perfor-
mance by replacing the GESD [8] as the F in the objective function with
cosine.

– CW-2N-full-target
Finally, an experiment is performed to observe the impact of our filtering
strategy on system performance. To make this experiment timely feasible, we
randomly selected 1000 test samples and used the best performing model to
disambiguate the samples. The results should be compared to the CW-2N-
ordered experiment, which has exactly the same configuration but is applied
on a limited window of 20 best scored formal names.

As Table 2 shows, all variants of CW-1N-ordered, CW-2N-ordered, and CW-
5N-ordered perform on par with each other, while CW-2N-ordered yields the
best results. The gap between CW-2N-no-score and CW-2N-ordered signifies
the importance of integrating source similarity scores as a soft constraint in the
objective function.

Although the gap between CW-2N-full-target and CW-2N-ordered is not
noticeable, the first model requires much more time at the inference step since
it computes the similarity for all formal names while CW-2N-ordered computes
it only for a limited number of formal names. This strategy for filtering formal
names is crucial to make the disambiguation feasible when the number of formal
names exceeds several thousand names. This experiment shows that the intro-
duced strategy is effective to make large scale NED manageable while getting
the same performance.
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Table 2. The baselines and the results of several experiments conducted on different
configurations of this work are reported using the Mean of Average Precision (MAP)
metric. CW stands for Current Work. All models except CW-2N-cosine use GESD [8]
for F . Scores are all in percent.

Model Dataset

Wiki Wiki-people Artists Patent Assignee

Levenshtein 23.8 24.6 29.6 72.0

Jaro-Winkler 29.7 28.3 32.8 85.0

Tam et al. [27] 41.6 59.4 59.7 90.6

CW-1N-ordered 61.4 71.1 70.2 88.9

CW-2N-ordered 61.7 71.3 70.4 89.7

CW-5N-ordered 61.5 71.2 70.1 88.6

CW-2N-random 57.2 69.3 68.4 86.3

CW-2N-no-score 56.4 65.3 67.2 84.8

CW-2N-cosine 60.5 70.4 69.9 87.1

CW-2N-full-target 61.8 71.2 70.5 89.4

Comparing the results on CW-2N-ordered versus CW-2N-random shows that
choosing false samples from instances with high similarity with the ground truth
names enhances the performance of the model. Finally, compared to its coun-
terpart with GESD, CW-2N-cosine performs poorly which suggests that better
similarity functions can improve the network even more.

6 Conclusion

NED is an integral component in many NLP applications such as record linking,
entity linking, or relation extraction. Large scale NED is particularly challeng-
ing due to the time it takes to extract the correct match among hundreds of
thousands of formal names, given each source name.

We proposed a state-of-the-art system for large-scale NED. Our system con-
sists of a deep architecture for pair-wise candidate ranking and a filtering scheme
that allows the network to scale up to hundreds of thousands of formal names.
We tested our system on four publicly available datasets and obtained superior
results with large margins on three of them.

Ideally, including contextual data should improve the performance of a NED
system. However, since neither of our datasets contains contextual data there is
no way to assess the impact of providing contextual data on the system perfor-
mance. Nevertheless, the proposed architecture is capable of modeling contextual
data by concatenating them with its input vectors. In our future work, we would
like to integrate formal names metadata as well as their surrounding context
into the model to further improve the performance.
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Abstract. Estimation of differential geometric quantities in discrete 3D
data representations is one of the crucial steps in the geometry process-
ing pipeline. Specifically, estimating normals and sharp feature lines from
raw point clouds helps improve meshing quality and allows us to use
more precise surface reconstruction techniques. When designing a learn-
able approach to such problems, the main difficulty is selecting neigh-
borhoods in a point cloud and incorporating geometric relations between
the points. In this study, we present a geometric attention mechanism
that can provide such properties in a learnable fashion. We establish the
usefulness of the proposed technique with several experiments on the
prediction of normal vectors and the extraction of feature lines.

Keywords: Attention · 3D computer vision · 3D point clouds

1 Introduction

Over the past several years, the amount of 3D data has increased considerably.
Scanning devices that can capture the geometry of scanned objects are becoming
widely available, and the computer vision community is showing a steady growth
of interest in 3D data processing techniques. A range of applications includes dig-
ital fabrication, medical imaging, oil and gas modeling, and self-driving vehicles.

The geometry processing pipeline transforms input scan data into high-
quality surface representation through multiple steps. The result’s quality and
robustness, set aside particular algorithms for surface reconstruction, are highly
dependent on the performance of previous stages.

One of the cornerstone steps in the pipeline is estimating differential geo-
metric properties like normal vectors, curvature, and, desirably, sharp feature
lines. These properties, estimated from raw input point clouds, play a signifi-
cant role in the surface reconstruction and meshing processes [9]. A multitude of
algorithms for extracting such properties have been developed, however many of
them require setting parameters for each point cloud separately, or performing
grid search of parameters, making the computational complexity of such tasks
burdensome.
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Fig. 1. Examples of sampled point clouds with the ground truth labels: (a), (b) –
normals, (c), (d) – feature lines (see Sect. 4 for details).

On the contrary, the area of geometric deep learning has been emerging
lately, which proposes tackling geometric problems with specialized deep learn-
ing architectures. Geometric deep learning techniques have shown success in
problems of edge and vertex classification, edge prediction in graphs [3], graph
classification with applications to mesh classification [7]; mesh deformation [12];
point cloud classification and segmentation [6]. In contrast, the estimation of
geometric properties of surfaces has not been studied in depth.

A recently presented Transformer architecture [19] has studied the benefits of
attention mechanisms for text processing, which has been established to be capa-
ble of detecting implicit relations between words in a sentence. When defining
a local region in a point cloud, it is desirable to make use of such implicit rela-
tions between points, which makes attention a promising direction of research in
the context of geometric problems. Such studies have started only recently, and
most of the papers are focusing on semantic (classification) problems in point
cloud processing. Little work has been done to improve the understanding of a
geometry of the underlying surface.

In this paper, we present a novel attention-based module for improved neigh-
borhood selection of point clouds. We call this module Geometric Attention. We
show that it increases the quality of learnable predictions of geometric properties
from sampled point cloud patches. As a qualitative result, we examine neighbor-
hoods and argue that Geometric Attention is capable of introducing meaningful
relations between points.

This paper is organized as follows. In Sect. 2, we provide an overview of
related work, with the focus on geometry-related approaches and previous
attention-based studies. Section 3 describes details of the proposed architecture.
Experimental results are presented in Sect. 4, with both qualitative and quanti-
tative results for the prediction of normal vectors and feature lines. We conclude
in Sect. 5 with a brief discussion.

2 Related Work

Data sets. Availability of 3D data sets has increased in recent years. Collection
ShapeNet [5] includes over 3 million objects. Another corpus is ModelNet [22],
comprising 151,128 meshes, which is widely used for classification benchmark-
ing. These collections of data do not fit the needs of geometric tasks due to
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no geometric labeling. Recently, a large-scale ABC data set [11] has been pre-
sented. It includes over 1 million high-quality CAD models; each of them is richly
annotated with geometric, topological, and semantic information.

Differential quantities estimation is a standard problem for discrete sur-
face processing. Since this problem is local, a point neighborhood is typically
approximated using the k nearest neighbors (kNN). The most basic types of
methods rely on fitting a local surface proxy [4]; others utilize statistical analy-
sis techniques (e.g., [15]). A closely related property is sharp edges. This topic
has not been studied in a learnable setup. Standard approaches to sharp fea-
tures include analysis of covariance matrices [1,14] and clustering of normals [2].
Typically extracted sharp features are noisy and unstable.

Geometric deep learning on point clouds is a particularly popular
research direction, as such architectures make minimal assumptions on input
data. The primary limitation of these architectures is that they struggle to define
point neighborhoods efficiently. The earlier instance of this type of networks is
PointNet [17] and its successor PointNet++ [18]. PointNet++ relies on the spa-
tial proximity of points at each layer of the network, composing a point cloud’s
local structures based on the Euclidean nearest neighbors approach. Some work
has been done to improve neighborhood query, including non-spherical kNN
search [20]. Similarly to these networks, Dynamic Graph CNN (DGCNN) [21]
utilizes Euclidean nearest neighbors as an initial neighborhood extraction; how-
ever, these local regions are recomputed deeper in the network based on learned
representations of points. PointWeb [25] has extended this architecture by defin-
ing a learnable point interaction inside local regions. Other networks base their
local region extraction modules on the volumetric idea by dividing the volume
that encloses point cloud into grid-like cells or constructing overlapping volumes
around each point [8].

Attention. After the attention mechanism was shown to be beneficial in [19],
many studies have adopted it for re-weighting and permutation schemes in their
network architectures. In point clouds, attention has been used to refine classifi-
cation and segmentation quality [13,23]. Reasoning similar to ours was presented
in [24]. The authors decided to separate local and global information to ensure
the rotational invariance of the network in the context of the semantic type of
problems.

3 Neural Network Architecture

We start with a general problem statement; then, we describe DGCNN archi-
tecture with the main design choices. After that, we proceed with a description
of the Geometric Attention module, which we incorporate into the DGCNN
architecture.

Suppose you have a point cloud P ∈ R
N×3, consisting of N points:

pi = (xi, yi, zi) ∈ R.3
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Fig. 2. Different types of distances.

The goal is to construct a mapping

ϕ(pi) = yi,

where yi are geometric properties defined for each point pi. The size of y may
differ depending on the specific property. For instance, in case of normals vector
yi ∈ R

3; for sharp feature labels – yi ∈ {0, 1}.
The DGCNN architecture is based on the EdgeConv operation (Fig. 3),

which, for an implicitly constructed local graph, extracts information from points
as a step of propagation along edges. Technically, this is done through a prox-
imity matrix:

PM = (−dij) ∈ R
N×N ,

where −dij is a negative distance from point pi to pj .
This proximity matrix is then utilized to construct the adjacency matrix of

the kNN graph G = (V, E) by selecting for each point k nearest ones. After local
areas are defined, inside each one, a multilayer perceptron (MLP) is applied
to convolve neighborhood feature vectors. At the final stage, an aggregation
operation (typically, a max pooling) is adopted to obtain new point features.

Following the notation from the original paper, we denote by xi ∈ R
F a

feature vector of point pi. Then, the EdgeConv operator is defined by

x′
i = max

j:(i,j)∈E
hθ(xi,xj). (1)

This EdgeConv operation is applied several times, then the outputs from each
layer are concatenated together to get the final output. In such an architecture,
point features carry both geometric and semantic information mixed.

3.1 Geometric Attention Module

Our main idea is to improve the feature extraction pipeline by modifying neigh-
borhood selection. In point cloud data, it is a common problem that sampling
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Fig. 3. EdgeConv module of the DGCNN architecture.

resolution is not enough to distinguish two sides of a thin plate (Fig. 2). To solve
this problem, one would require a geodesic distance defined on a point cloud,
which is not easy to get. However, with additional information (normal vectors
or semantic partition of a point cloud into geometric primitives), disambiguating
two sides of a plate is not an issue. For this reason, we introduce a semantically-
conditioned distance to represent Euclidean proximity of points if they have
similar semantic features.

Since such semantic information is not available, we attempt to disentangle
semantic (global) features from geometric (local) information inside the network.
We aim to implement this by adding semantic information flow and using both
geometric proximity and semantic features-based attention in order to define the
Geometric Attention module (refer to Fig. 4 for illustration).

Fig. 4. Geometric attention module.

The motivation behind this choice follows from the fact that differential quan-
tities are defined locally, which means that the output should be computed from
a small vicinity of a point. At the same time, from the global point of view,
differential properties are closely related to the smoothness of a surface; they
are closer to each other within one geometric primitive. For instance, a normal
vector field is the same inside one planar surface patch. This ambiguity may
cause a struggle for the network when computing output. Hence we attempt to
have these local and global types of data separated.
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Semantic Features. As in DGCNN, we have point features (geometric fea-
tures) xi ∈ R

F1 . First, we introduce semantic feature vectors fi ∈ R
F2 , which

at the first layer are separately learned from point coordinates directly. In the
following layers, these features are computed from concatenated vectors of geo-
metric features and semantic features from the previous layer. Semantic features
are devoted to solely represent semantic information in a rather simple manner
as a soft one-hot encoding with 64 channels. To have them represent one-hot
encoding, we divide each feature vector by its norm:

f ′
i = gφ(xi, fi),

f ′
i =

f ′
i

‖f ′
i‖

.
(2)

After semantic features are constructed, we apply Scaled Dot Product (SDP)
attention to calculate the semantic attention matrix:

qi = gτ1(f
′
i)

ki = gτ2(f
′
i)

SA =
qk�
√

t
=

( 〈qi,kj〉√
t

)
,

(3)

where t is a scaling factor, which is set as the dimensionality of f ′
i according

to [19].
Ideally, this leads to learning a low-rank matrix representation, with the

rank equal to the number of semantic entities inside the point cloud. Since the
correlation of similar semantic feature vectors is high, such a matrix should have
greater values for points within the same semantic region of a point cloud.

Semantically-Conditioned Proximity Matrix. Now we are ready to define
the Geometric Attention matrix, or semantically-conditioned proximity matrix.
Since the motivation behind DGCNN is building the graph, we follow this notion,
but instead of measuring closeness of points based on PM, we combine purely
Euclidean proximity of geometric features with the learned semantic attention
matrix, which encodes semantic similarity inside point cloud. To normalize these
matrices, we apply the row-wise softmax function:

SA = softmax(SA),
PM = softmax(PM),
GA = softmax (SA ⊗ PM)

(4)

where GA is the Geometric Attention matrix, and ⊗ is element-wise matrix
multiplication. The idea behind this decision is to relatively increase proximity
values for those points that have similar semantic feature vectors, and decrease
their closeness if semantic features are sufficiently different.

After the matrix GA is computed, we follow EdgeConv as in the original
paper. The rest of the architecture is structured as Dynamic Graph CNN for
segmentation tasks.
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4 Experimental Results

We chose to predict normal vectors and detect sharp feature lines for the experi-
mental evaluation of the Geometric Attention module. Since we focus on inferring
the geometric understanding of the underlying surface, we argue that these two
problems are the most representative as a benchmark. We note that the corre-
sponding labeling could be easily obtained from the set of raw meshes, which
has no additional labeling whatsoever. However, we believe that the quality of
such labeling would be poor; hence, we opt to use ABC data set [11] to simulate
data for our experiments.

4.1 Data Generation and Implementation Details

We start by designing the acquisition process. For a randomly selected point on
a mesh surface, we begin growing the mesh neighborhood from the model by
iteratively adding connected mesh faces. After the desired size has been reached,
we apply the Poisson sampling technique aiming to obtain a point cloud with an
average distance between points of 0.05 in original mesh units. The mesh patch
size is selected such that after sampling is finished, it would ensure that the
shortest sharp feature line is sampled with a predefined number of points. We
found in our experiments that 8 points are sufficient to distinguish short curves
robustly. When the cropped mesh patch has been sampled, we select 4096 points
to provide sufficient sampling for geometric features. We refer to this set of points
as point patch. We then use the initial mesh and labeling provided in the data
set to transfer labels to the generated point patch. For normals, that is relatively
straightforward, but for sharp features, we need to query points from point patch
that are the closest to the mesh edges marked as sharp in ABC. We take point
patch samples within one sampling distance tube from sharp edges and label
them as “1”. Using this process, we generate 200 k patches and divide them into
training, validation, and test sets with ratios 4:1:1, respectively. See Fig. 1 for
ground truth examples.

Table 1. Loss values for normals estimation and feature lines detection experiments.

Network Normals Feature lines

Angular loss RMSE loss Balanced accuracy

DGCNN 0.01413 0.38618 0.9753

Ours 0.01236 0.38266 0.9892
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Fig. 5. Histogram of angular errors for normals estimation: left – DGCNN, right –
Geometric Attention network.

We normalize point patches by centering them and scaling to fit inside the
unit ball. During training, we augment the training data by randomly rotating it.

Our module has been implemented using the PyTorch [16] deep learning
framework. We trained networks for 10 epochs with Adam optimizer [10] and
learning rate 10−3. Both of the networks were running with batch size 8 on one
Tesla V100 GPU. We replaced all ReLU activations with LeakyReLU in order
to avoid computational instabilities during normalization.

As discovered in the benchmark study devoted to normals estimation from
[11], DGCNN provides the best accuracy among learnable methods with a
smaller number of parameters; hence we base our experiments on comparing to
DGCNN. We note that, even though the Geometric Attention module requires
additional tensors to store the features, the number of parameters does not
increase considerably.

4.2 Normals Estimation

The first task we experiment on is estimation of normal vectors. To do that,
we use segmentation architecture with three output channels. We normalize the
output to produce norm 1 vectors. As a loss function, we choose to optimize the
loss from [11]:

L(n, n̂) = 1 − (
n�n̂

)2
. (5)

Although this loss function is producing the unoriented normals, we add a
small regularization with Mean Squared Error functional. Refer to Table 1 for
numerical results, where we report the angular loss (5) and mean Root Mean
Squared Error computed over all patches. We provide the histograms of angular
errors in Fig. 5.

The histograms indicate that albeit the results are similar, the tail of the loss
distribution is thinner for Geometric Attention.

As one could see from Fig. 6, DGCNN does not always take into account
directions of normals, and the Geometric Attention network can determine com-
mon normals direction. We believe that semantically-conditioned distances are
helping with smoothing the result while keeping it geometrically meaningful.
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Fig. 6. Normals estimation result: left – ground truth, middle – DGCNN, right –
Geometric Attention network.

4.3 Sharp Feature Lines Extraction

For this experiment, the segmentation architecture was made to compute one
value per point. We optimized the Binary Cross-Entropy loss for this segmenta-
tion task. Table 1 presents the Balanced accuracy value, which was computed as
an average of true negative rate and true positive rate for each patch, and then
averaged over all patches. The histograms of Balanced accuracies for DGCNN
and our network are in Fig. 7.

Fig. 7. Histogram of balanced accuracy values for sharp feature detection: left –
DGCNN, right – Geometric Attention network.

A common issue with DGCNN predictions is missing the obtuse feature lines
(as seen in Fig. 8, middle). Our network robustly detects such cases.

Lastly, we demonstrate the effect of semantically-conditioned proximity for
the case of feature detection in Fig. 9. It shows that the two planes have been
distinguished implicitly inside the network, and the feature line semantically sep-
arates them. The color-coding on the right image indicates the relative distances
of all points from the query point. Note that the bright region border does not
extend to the set of points marked as sharp, meaning that the kNN would only
select points from the top plane.
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Fig. 8. Feature lines detection result: left – ground truth, middle – DGCNN, right –
Geometric Attention network.

Fig. 9. Semantically-conditioned proximity. For a query point (large green), we show
the learned distances: left – Geometric Attention network prediction, right – relative
distances (brighter – closer). (Color figure online)

5 Conclusion

In this paper, we have proposed the Geometric Attention module, which
improves point neighborhood selection in point cloud-based neural networks.
Unlike the previous studies, our approach is concentrated purely on geometric
properties of a point cloud.

Experiments have shown that the quality of the estimated local geometric
properties of the underlying surface has increased. Qualitative results indicate
that our module can meaningfully define a semantically-conditioned distance.
These claims have been confirmed with two experimental setups aimed at pre-
dicting surface normals and sharp feature lines.

The principal limitations of our approach are related to the common prob-
lems of the point cloud networks. Increasing the point patch size or the neighbor-
hood radius leads to the rapid growth of the network, limiting scalability. The
architecture design requires a fixed size of the inputs, which is not convenient in
real-world applications and does not allow for the adaptive local region selection,
which could be beneficial in many cases.

Possible directions of future research include the study of point interactions
inside local regions for better feature extraction and further development of
geometrically-inspired methods for robust geometry reconstruction from discrete
surface representations.
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Abstract. Within the last years Face Recognition (FR) systems have
achieved human-like (or better) performance, leading to extensive
deployment in large-scale practical settings. Yet, especially for sensible
domains such as FR we expect algorithms to work equally well for every-
one, regardless of somebody’s age, gender, skin colour and/or origin. In
this paper, we investigate a methodology to quantify the amount of bias
in a trained Convolutional Neural Network (CNN) model for FR that
is not only intuitively appealing, but also has already been used in the
literature to argue for certain debiasing methods. It works by measuring
the “blindness” of the model towards certain face characteristics in the
embeddings of faces based on internal cluster validation measures. We
conduct experiments on three openly available FR models to determine
their bias regarding race, gender and age, and validate the computed
scores by comparing their predictions against the actual drop in face
recognition performance for minority cases. Interestingly, we could not
link a crisp clustering in the embedding space to a strong bias in recog-
nition rates—it is rather the opposite. We therefore offer arguments for
the reasons behind this observation and argue for the need of a less näıve
clustering approach to develop a working measure for bias in FR models.

Keywords: Deep learning · Convolutional Neural Networks · Fairness

1 Introduction

FR has improved considerably and constantly over the last decade [13,17,25,40],
giving rise to numerous applications ranging from services on mobile consumer
devices, applications in sports, to the use by law enforcement agencies [32,35,
42,43]. The increased deployment has triggered an intense debate on the ethical
downsides of pervasive use of biometrics [6,29,34,39] up to the point where
regulation [23] and bans on the technology are discussed1 and partially enforced2.
1 https://www.banfacialrecognition.com/.
2 https://www.bbc.com/news/technology-48276660.
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This debate on ethical usage of FR technology is part of a larger trend in the
machine learning field to account for ethical aspects of the methodology [7,28],
which includes the aspects of trustworthiness3, transparency (interpretability)
[3,16] and fairness (bias) [4].

The issue of bias in machine learning is especially relevant in the area of FR,
where we legitimately expect machine learning models to be unbiased because
of their potentially large impact (e.g., for crime prediction [20]). The huge diver-
sity due to race, gender and age in the appearance of human faces is however
contrasted by a respective homogeneity of the data collections used to train such
models. This leads to observations like the one that face recognition only works
reliably for white grown-up males [8]. As working face recognition is increasingly
relied on to grant individuals access to services and locations, and to predict peo-
ple’s behaviour, bias against certain people groups easily results in prohibitive
discrimination.

The source of bias is usually the training material. Therefore, the community
created datasets with known biases for race, skin color, gender and age, such as
Racial Faces in-the-Wild (RFW) [45] and Diversity in Faces [33]. Given the bias
in the data we are able to study the issue in the final models on two concrete
levels: by (a) quantifying the amount of bias that exists in any trained FR model;
and by (b) reducing identified bias in models by adequate countermeasures.

In this paper, we perform an in-depth exploration of a certain methodology
for measuring the specific amount of bias that exists in any trained FR CNN.
The underlying idea is appealing due to its intuitive approach and similar rea-
soning has already been used to argue for specific bias removal algorithms in the
past [2]. The quantification itself relies on internal cluster validation measures for
clusterings of embeddings based on labels for race, gender and age. It is agnostic
towards the specific architecture and training procedure of the model and thus
applicable to any FR system that exposes its embeddings; it is also non-invasive
with respect to model training and does not effect the model’s performance.
Counterintuitively, our experiments speak against the validity of the idea and
confirm the contrary: higher bias, as expressed in a drop in face recognition
accuracy for minority cases, goes along with worse clustering, i.e. less “aware-
ness”/more “blindness” of the model with respect to distinguishable features
of the respective minority. We thus offer potential reasons for our observations,
leading to preliminary results on how to better quantify bias in FR.

2 Related Work

The problem of bias in machine learning is well documented in the literature
[30]. Several reasons trigger this bias: bias in the final decision as imposed by
algorithm design, training process and loss design is addressed by the term algo-
rithmic bias, though the term can be problematic4. Selection bias is introduced

3 https://liu.se/en/research/tailor/.
4 https://stdm.github.io/Algorithmic-bias/.

https://liu.se/en/research/tailor/
https://stdm.github.io/Algorithmic-bias/
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when human biases lead to selecting the wrong algorithm or data for FR, lead-
ing to biased decisions. Data bias finally is introduced by a lack of diversity or
present imbalance in a dataset used for training or evaluating a model.

The presence of bias in model predictions for FR – leading to discrimination
against certain factors such as race, age and gender of individuals – motivates two
strands of recent research: (a) to automatically quantify the amount of bias in a
model, and (b) to reduce it by a range of methods. Regarding bias measurement
(a), Hannak et al. give criteria to accurately measure bias with respect to price
discrimination [19]. Garcia et al. identify demographic bias by investigating the
drop in confidence of face matching models for certain ethnicities [15]. Cavazos
et al. use three different identification thresholds, namely the thresholds at equal
false accept rates (FARs) and the recognition accuracy, to quantify racial bias for
face matching [11]. Serna et al. show that FR bias is measurable using normalized
overall activation of the models for different races [41]. In this paper, we explore
a novel method to measure (quantify) bias that differs threefold from these
approaches: (i) it is applicable to any model that exposes its embeddings, (ii) it
is independed of model training and (iii) it is not based on model performance,
but rather on the way faces are represented in the network.

Regarding bias reduction (b), most of the research in FR aims at tackling
racial bias. However, Li et al. propose optimizing a distance metric for removing
age bias. The remainder of the literature focuses on racial bias by improving both
algorithmic and data biases [26]. Steed and Caliskan attempt to predict appear-
ance bias of human annotators using transfer learning to estimate the bias in
datasets [44], and Kortylewski el al. introduce synthetic data to reduce the neg-
ative effects of imbalance in datasets [22]. Yu et al. propose an adaptive triplet
selection for correcting the distribution shift and model bias [47]. Robinson et al.
show that the performance gaps in FR for various races can be reduced by adapt-
ing the decision thresholds for each race [36]. Domain transfer and adversarial
learning are the other methods to reduce racial bias by adapting the algorithms.
Wang et al. use a deep Information Maximization Adaptation Network (IMAN)
for unsupervised knowledge transfer from the source domain (Caucasian) to
target domains (other races) [45]. To remove the statistical dependency of the
learned features to the source of bias (racial group), Adeli et al. propose an
adversarial loss that minimizes the correlation between model representations
and races [1]. Finally, Wang et al. [46] propose an update to the “Hard Debias”
algorithm that post-processes word embeddings for unbiased text analysis and
state that the idea might be transferable to other domains.

3 An Intuitively Appealing Method to Measure Bias

Human FR is not unbiased at all: we recognize faces that are most familiar much
better than others. This “other-race effect” is one of the most robust empirical
findings in human FR and accompanied by the popular belief that other-race
faces all look alike [31]. The source of this drop in recognition performance for
faces of unfamiliar origin seems to be that we know a rich feature set to distin-
guish between akin faces, but only know very coarse features for very differently
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looking faces. This results in the effect, that unfamiliar races appear to be dif-
ferent in general, which overlays how they differ amongst each other.

Humans associate the presence of bias with an observed drop in recognition
performance; and the models seem to be the more biased the more aware of the
differences between certain facial characteristics that are associated with poten-
tial discrimination. The method for measuring bias that we are concerned with
in this paper builds upon both observations by exploiting them in the following
way: first (a), bias in a specific model and for a specific characteristics (e.g., age,
gender or race) is measured by quantifying how well the embeddings of a set of
faces build clusters with respect to this characteristic. A good clustering into,
for instance, age groups suggests that the model is very aware of the differences
in age, which enables it to potentially discriminate age groups (in the two-fold
meaning). Then (b), the resulting “score” is verified by experimentally checking
for a drop in FR performance for faces with minority expressions for this charac-
teristic. Alvi et al. argue along these lines in order to demonstrate the effect of an
algorithm to remove bias: ‘After unlearning gender, the feature representation is
no longer separable by gender, demonstrating that this bias has been removed.’
[2].

3.1 Quantifying Bias Through Internal Cluster Validation Measures

A straight-forward way to perform the respective bias quantification in (a) is
to use existing cluster validity measures on the embeddings of FR models. The
embeddings, usually taken as the activations of the last fully connected layer of
a trained CNN during evaluation on a respective image, form a mapping of a
face image into a compact Euclidean space where distances directly correspond
to a measure of face similarity [40]. As the internal representation of the model
contains the facial discriminant information, its embedding forms the basis for
all recognition, similarity computation etc. A model with embeddings which do
not cluster well with respect to a certain facial characteristics can be said to be
“blind” towards the features that distinguish between its different expressions,
which seems to be a good starting point for unbiasedness.

To eliminate the effect of many hyperparameters on the evaluation of the
methodology, we rely on ground truth labels (either human provided or pre-
dicted by reference models) rather than a clustering algorithm for the member-
ship of embeddings to clusters of specific discriminative characteristic. Hence,
cluster membership is dependent only on the characteristics of the dataset itself
and not on the FR model under evaluation and the only model-dependent part
entering the bias measurement are the embeddings themselves. How well they
cluster can then be quantified by so-called internal cluster validation measures
[27] that are well established to measure the “goodness” of a clustering com-
pared to other ones. Internal cluster validation measures are the correct ones
to use because regardless of the source of our cluster memberships, we want
to compare different clusterings with each other and not a clustering to ground
truth. Generally, the indices are suitable for measuring crisp clustering, where no
overlap between partitions is allowed [24]. For our evaluation, we compute the
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Mean Silhouette Coefficient [38], Calinski-Harabasz Index [9], Davies-Bouldin
Index [12] and Dunn Index [14]. However, for the Dunn Index we observe very
small values and large variance in all experiments, resulting in no meaningful
distinctions between different FR models. Therefore, those results are omitted.

The Mean Silhouette Coefficient is a measure of how similar an object is to
its own cluster (cohesion) compared to other clusters (separation). It is bounded
between −1 and +1, whereas scores around zero indicate overlapping clusters.
Negative values indicate that there may be too many or too few clusters, and pos-
itive values towards 1 indicate well separable clusters. The Silhouette Coefficient
for a set of samples is given as the mean of the Silhouette Coefficients per sam-
ple. The Calinski-Harabasz Index, also known as the Variance Ratio Criterion, is
defined as the ratio of the between-cluster variance and the within-cluster vari-
ance. Well-defined clusters have large between-cluster and a small within-cluster
variance, i.e. a higher score relates to a model with better defined clusters. Finally,
the Davies-Bouldin Index computes for each cluster the other cluster that it is
most similar to. Afterwards, it summarizes the maximum cluster similarities to
create a single index. A low index indicates that the clusters are not very similar,
i.e. a low value relates to a model with better separation between the clusters.

3.2 Models, Dataset and Experimental Setup

In the following, we describe our experimental setup to (a) measure bias in the
embedding space based on internal cluster validation measures, and (b) vali-
date the resulting score based on the drop in face recognition performance on a
benchmark dataset. We choose three different FR models from the popular and
well-established Visual Geometry Group (VGG) family, openly available from
the VGG, perform measurements and validate on the RFW dataset to study the
bias for race, gender and age.

We use trained models that are available directly from the authors5. They
were pretrained on the MS-Celeb-1M [18] dataset and then fine-tuned on
VGGFace2, which contains 3.31 million images of 9 131 identities [10]. All mod-
els follow the SE-ResNet-50 architectural configuration in [21], but differ in the
dimensionality of embedding layer (128D/256D) which is stacked on top of the
original final feature layer (2048D) adjacent to the classifier. All models were
trained with standard softmax loss.

The RFW dataset was designed to study racial bias in FR systems [45].
It is constructed with four testing subsets, namely Caucasian, Asian, Indian
and African. Each subset contains about 10k images of 3k individuals for face
verification. We further added a gender and age label to each test image of the
RFW dataset using a Wide Residual Network trained on the UTKFace [49] and
IMDB-WIKI [37] datasets6. The age prediction is in the range of 0–100. For the
cluster evaluation, we split the age predictions into the three non-overlapping
groups <30, 30–45 and 45+. The boundaries are chosen such that we have at

5 https://github.com/ox-vgg/vgg face2.
6 https://github.com/yu4u/age-gender-estimation.

https://github.com/ox-vgg/vgg_face2
https://github.com/yu4u/age-gender-estimation
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least 3,000 samples in each class. Gender prediction follows the same procedure
as age prediction. The model yields a continuous gender score sgender between 0
and 1, whereas lower values indicate male and higher values indicate female. In
order to use all samples from the dataset, we split it at sgender < 0.5 for male
and sgender > 0.5 for female. Table 1 gives an overview of the resulting number
of samples per cluster with respect to the characteristic race, age and gender. As
one can see, the race clusters are nicely balanced, whereas for gender we have a
strong imbalance towards “male”, and for age the 30–45-group is dominant.

Table 1. Number of samples per cluster regarding different facial characteristics in the
RFW dataset that are associated with bias.

Face characteristic Clusters #samples

Race (human
annotation)

Caucasian; Indian;
Asian; African

10, 099; 10, 221
9, 602; 10, 397

Age [years] (predicted)
Gender (predicted)

<30; 30–45; 45+
male; female

4, 815; 32, 530; 3, 046
28, 928; 11, 463

For our evaluation we extract the embeddings of the approximately 40k face
images from the RFW testset for each of the VGG2 models. Face detection and
alignment is done using the MTCNN approach7 proposed by Zhang et al. [48].
Based on the embeddings, we report the FR rates and the cluster validation
measures as per the dimensions race, gender and age. For face recognition, we
report a match if the sample that is the nearest neighbor to the test face comes
from the same person.

4 Results

So far, we have discussed two proxies for quantifying bias. (a) goodness of clus-
tering of the embeddings w.r.t to the different expressions of a facial charac-
teristic like age, gender or race—the higher, the more bias. It can be measured
for any model that exhibits its embeddings, given that a dataset with labels for
these expressions exists. It is thus a candidate for a measurement methodology
to quantify bias in general. (b) face recognition rate for cases that belong to
the minority expression of said characteristics—the lower, the more bias. This
approach needs labels and multiple samples of persons, but serves as a measure
of the real-world impact of bias/discrimination (as people from minority groups
are less well handled); it is thus our candidate to validate the bias as measured
by proxy (a).

Table 2 shows face recognition rates per model and expressions of facial char-
acteristic (b), alongside the introduced cluster validation indices (a). We high-
light the best recognition rates and the lowest percentual difference compared
7 https://github.com/YYuanAnyVision/mxnet mtcnn face detection.

https://github.com/YYuanAnyVision/mxnet_mtcnn_face_detection
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to the mean over the different expressions of a characteristic (i.e., lowest actual
bias). Further, we highlight the worst clustering according to each index (i.e.,
lowest measured bias as predicted by the method under consideration here).

Table 2. Bias measurement results (bad Clustering Score) vs. bias validation results
(good Recognition Rate and low Relative Difference) per model and characteris-
tic/expression. Clustering scores are the Mean Silhouette Coefficient (MS), Calinski-
Harabasz Index (CH) and Davies-Bouldin Index (DB); ↑ and ↓ depict if a high or low
value indicate a good clustering, respectively. Lowest bias according to each type of
score is highlighted.

Architecture
Metric

Race
Expr. Avg.

Clustering Score
(#features) Caucasian Indian Asian African MS ↑ CH ↑ DB ↓

VGG2 (128)
Rec. Rate 0.8906 0.8531 0.8310 0.7998 0.8436

0.062 1, 812 3.85
Rel. Diff. (%) 5.5648 1.1271 -1.5011 -5.1907 -

VGG2 (256)
Rec. Rate 0.8787 0.8265 0.7981 0.7597 0.8158

0.029 766 6.20
Rel. Diff. (%) 7.7157 1.3208 -2.1693 -6.867 -

VGG2 (2048)
Rec. Rate 0.8799 0.8472 0.8305 0.7959 0.8384

0.050 1, 473 4.49
Rel. Diff. (%) 4.9542 1.0523 -0.9427 -5.0638 -

Gender
Male Female

VGG2 (128)
Rec. Rate 0.8381 0.8576 0.8479

0.0048 135.3 15.56
Rel. Diff. (%) -1.1507 1.1507 -

VGG2 (256)
Rec. Rate 0.8088 0.833 0.8211

0.0017 64.44 22.55
Rel. Diff. (%) -1.5039 1.5039 -

VGG2 (2048)
Rec. Rate 0.8327 0.8525 0.8426

0.0063 143.7 15.11
Rel. Diff. (%) -1.1725 1.1725 -

Age
< 30 30–45 45+

VGG2 (128)
Rec. Rate 0.8671 0.8358 0.8907 0.8645

0.0002 21.92 34.34
Rel. Diff. (%) 0.2971 -3.3234 3.0263 -

VGG2 (256)
Rec. Rate 0.8424 0.8063 0.8749 0.8412

-0.0003 8.51 52.90
Rel. Diff. (%) 0.139 -4.1481 4.009 -

VGG2 (2048)
Rec. Rate 0.8638 0.8305 0.8821 0.8588

0.0006 25.40 32.26
Rel. Diff. (%) 0.5789 -3.2981 2.7192 -

For race and age, the VGG2 (128) model performs best regarding pure recog-
nition rates, whereas VGG2 (2048) shows the lowest performance drop, i.e. is
the least biased model regarding race and age. For gender we observe only a
marginal difference in recognition rates and performance drops between those
models. The VGG2 (256) model is the worst option with respect to recognition
rates as well as performance drops (actual bias). Looking at the clustering scores
(measured bias), much to our surprise, this same VGG2 (256) model produces
the worst clustering with respect to all validation indices and therefore can be
considered to be the model with the least distinctive face representations regard-
ing race, gender and age (lowest measure bias). However, this is not reflected
in the class-based performance drop for the recognition rates (that should be
small). Regarding the age groups, the Mean Silhouette Coefficient takes very
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small or negative values which indicates overlapping and/or an unsuitable num-
ber of clusters. Given the continuous nature of age, this is to be expected.

5 Discussion and Conclusions

In general, we could not link a crisp clustering in the embedding space to a strong
bias in the recognition rates. In our experiments we found quite the opposite.
This spawns discussion on three levels:

First, on the level of the underlying reasoning : it needs to be checked how
much the two proxies used here to quantify bias (namely, face recognition per-
formance on minority examples as a sign for the practical effect of bias; and
well-defined clusters in the embedding space with respect to typically biased
characteristics as a way to measure/predict this real-world influence) are actu-
ally correlated with what is meant by “bias”. This is especially relevant in the
light of the fact that parts of this reasoning have already been adopted in the
literature as a way to show the effectiveness of debiasing algorithms.

Second, on the level of implementation: Even if the notion of bias is reflected
in the embedding space, the adopted näıve clustering approach using only broad
expression types for races, gender and age groups can be reconsidered. We
hypothesize that a cluster like “male” or “African” is too general and rather
formed of multiple sub-clusters in the embedding space. Thus, a cluster valida-
tion index on male/female cannot reflect the actual awareness of the model of
these ultimately relevant sub-clusters. This intuition is supported by a visual-
isation of the embeddings as show in Fig. 1. For all three models, one can see
that an expression of race such as “Caucasian” is comprised of at least two sub-
clusters. However, one has to keep in mind that the t-SNE representation is just
a projection into 2D space from the original 128/256/2048D space and generates
slightly different results each time on the same data set. Furthermore, for the
age characteristic, the distribution of embeddings into three clusters was some-
what arbitrarily based on a balance argument and could be chosen differently.
Additional “hyperparameters” of the methodology and hence candidates for fur-
ther experiments are the tested model architectures and their training details
(especially the used loss functions have a large effect on the embeddings and the
space spanned by them).

Third, on the level of insight/explanation: focusing now solely on the example
of racial bias for illustrative reasons, the idea of how to measure bias in this paper
relies on the assumption that the main source of bias in FR is the separation of
races in the embedding space (the better separated, the more awareness, hence
the more biased); this could be measured by clustering quality with respect to
different expressions of race. The failure to observe any such correlation could
be due to, we conjecture, the between-cluster separation being less important to
explain bias than the within-cluster distribution (i.e., it doesn’t mean too much
how e.g. “Africans” are separated from “Asians” in the embedding space – it is
much more important how the “African” embeddings are distributed amongst
each other). To underpin this hypothesis, we present the distribution of pairwise
distances between test embeddings from various races in Fig. 2.
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Fig. 1. T-SNE visualisations of embeddings from VGG2 (128) (a), VGG2 (256) (b)
and VGG2 (2048) (c). The samples are colored according to their race.

Figure 2 allows the conclusion that the average distance of the embeddings
for “Caucasians” is higher than the one for other races. This means in turn
that the embeddings of “Caucasians” are distributed with a lower density in the
embedding space. At the same time, these embeddings are the ones with the best
recognition accuracies. The same observation is supported by the experiment
behind Fig. 3 that uses the k-nearest neighbor classifier with varying k for race
classification. “Africans” show the highest race recognition rate, suggesting that
the embeddings are concentrated with high density in a specific region (similar
to the lower average pairwise distance according to Fig. 2). The race recognition
accuracy of “Caucasian” embeddings appropriately is the smallest and drops
with the number of nearest neighbors, suggesting a low-density distribution of
the embeddings for this race.

VGG2 (128) VGG2 (256) VGG2 (2048)

Euclidean
distance

Cosine
distance

Fig. 2. Probability density distribution of pairwise (Euclidean and Cosine) distances
between test image embeddings of different races.
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VGG2 (128) VGG2 (256) VGG2 (2048)

Fig. 3. Accuracy of k-nearest neighbors classifiers for race classification in the embed-
ding space.

In summary, we presented an intuitively motivated idea on how to measure
bias in any existing FR model that exposes its embeddings, and how to validate
it based on FR accuracy. A similar reasoning has been used in the past in the
literature to argue for the benefits of certain debiasing methods. This is why the
presented results, though “negative” (they did not confirm the validity of the
method, but testified to the opposite effect), are still very important: they show
that similarly to what is known as the “curse of dimensionality” [5], intuition
fails in this complex scenario, and assumptions need to be more thoroughly
checked. Nevertheless, the given explanatory approaches show a way to turn the
underlying reasoning into usable measures of bias in the future.

Future work will thus first focus on finding answers to the questions raised in
the discussion. Then, a next step is to calibrate any resulting measure: to have
the differently scaled clustering indices combined into a single bounded measure
between, say, −1 and 1 which allows interpretations similar to the meaning the
correlation coefficient can provide (i.e, certain ranges of values mean “biased”
or “bias-free”).
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Abstract. In this work, we analyse different temporal feature extrac-
tion window approaches, in combination with short-time heat and elec-
tric pain stimuli. Thereby, we focus on the physiological signals of the
Experimentally Induced Thermal and Electrical (X-ITE) Pain Database.
Each of our proposed approaches is evaluated based on the leave-one-
subject-out cross-validation using the random forest method. Moreover,
the effectiveness of each physiological signal is inspected separately, as
well as by applying the feature fusion approach. Thereby, we analyse dif-
ferent binary classification tasks, as well as four-class classification tasks.
Our outcomes indicate that a shifted temporal feature extraction win-
dow increases the classification performance significantly, when pain is
induced by thermal stimuli. Moreover, our evaluations point out that the
outcomes differ significantly, when participants are exposed to electrical
pain stimuli. For short-term electric pain stimuli, the best results are
obtained without temporal shifts of the feature extraction windows.

Keywords: Feature extraction · Time window analysis · Pain intensity
classification · Physiological signals · Heat and electric pain analysis

1 Introduction

The approach to automated pain recognition is primarily driven from the findings
that patients with limited communication options on the one hand receive an
oversupply or undersupply of analgesics and on the other hand humane external
observation scales only allow a limited temporal resolution. To further eluci-
date the pain configuration, machine learning algorithms have therefore been
developed over the last years and tested in healthy volunteers in the form of
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cross-validation [8,9,12,13]. The automated measurement of pain intensity is
based on the sensory recording of pain reactions. Such sensory recordings are
for example electrodermal activity (EDA), muscle activity (EMG) of the facial
muscles and the musculus trapezius, and cardiovascular activity (ECG). Further-
more, behavioural responses to pain are studied: head posture and movement,
paralinguistic utterances such as groaning, sighing, loud breathing and voice
characteristics when speaking [9,12,13]. The most comprehensive multimodal
data sets are the X-ITE Pain Database [3] (134 subjects, about 25,000 pain
stimuli), the BioVid Heat Pain Database [11] (87 subjects, about 14,000 pain
stimuli), and the SenseEmotion Database [10] (45 subjects, about 8,000 pain
stimuli). In the current work, we evaluate different temporal window approaches
for the extraction of features.

The remaining sections are structured as follows. Section 2 presents a small
overview of related work. Section 3 provides a brief summary of the X-ITE Pain
Database. Subsequently, we present the steps for signal preprocessing, the extrac-
tion of features, as well as the definition for different temporal windows. Section 4
provides a description of the different experimental settings and the correspond-
ing results. In Sect. 5, we conclude the current work by discussing the outcomes
and providing some ideas for future work.

2 Related Work

Many researches contribute to the field of automated pain assessment. A well
performing system relies on a good representation of the data, reliable methods
for the feature extraction, as well as appropriate classification models, which
are able to make the most use out of the extracted features. Thiam et al. [8]
conducted a feature extraction time window analysis, in combination with the
random forest approach [1], based on the SenseEmotion Database [10]. Their
outcomes show that extracting features from physiological data starting after
the onset (the moment, when the induced temperature starts to increase to a
predefined heat level) improved the classification accuracy. This indicates that
different shifts and window lengths can increase the accuracy value. For the
classification task no pain vs. the highest pain intensity, the highest accuracy
value is reported as 80.24%.

Furthermore, Thiam et al. [7] proposed a deep model architecture for auto-
mated feature learning. A convolutional neural network was used to learn a signal
representation, which led to the current state-of-the-art classification accuracy
values, based on the BioVid Heat Pain Database [11]. For the EDA modality,
the highest reported accuracy value is 84.57%, for the no pain vs. the highest
pain intensity setting. In [9], Thiam et al. analysed a deep two-stream attention
network for pain recognition based on video sequences, in combination with the
BioVid Heat Pain Database.

Werner et al. [13] were the first to experiment with the X-ITE Pain
Database [3]. The aim of their work was to provide and analyse initial baseline
results. All classification tasks, based on random forest classifiers, were evalu-
ated for all single modalities (physiological, audio and video data), as well as
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for the feature fusion and different decision fusion approaches. The outcomes
in [13] show that audio is the worst performing modality. The best accuracy
value, for the task no pain vs. the highest heat pain intensity, is reported for
the EDA channel with a value of 79.1%. For the no pain vs. the highest electric
pain intensity setting, the EDA channel led to the best accuracy value of 91.1%.
For a broad overview on automated pain assessment, we refer the reader to a
recently published survey article, by Werner et al. [14].

3 Methods

3.1 Dataset Description

In this work, we focus on the X-ITE Pain Database [3], which contains data
from multiple sensors recorded during induced heat and electrical pain stimuli.
The database provides data for short-term (phasic) and long-term (tonic) pain
inductions. A total of 134 healthy subjects (67 women and 67 men) participated
in the experiments. The recorded data is composed of the following modalities:
ECG, EMG, EDA, as well as video and audio data. ECG signals measure a
person’s heart activity. EMG sensors measure a person’s muscle activity. The
EMG sensors were attached to the muscles corrugator, zygomaticus and trapez-
ius. EDA signals measure a person’s skin conductance. The EDA sensors were
attached to the participants’ ring and index finger. Each phasic pain stimulus
has a length of 4 s (heat) and 5 s (electric), each tonic stimulus has a length
of 60 s. Therefore, the X-ITE Pain Database provides the following four pain
stimulation categories: phasic heat, phasic electric, tonic heat and tonic elec-
tric. For each category, three different pain intensities were predefined, for each
test subject. The lowest phasic heat intensity (H1) is defined as the point at
which a subject started feeling pain as a transition from just feeling warmth.
The lowest phasic electric intensity (E1) is defined as the point at which a sub-
ject started feeling pain instead of tingling. The highest pain intensity, for both,
heat (H3) and electric (E3), is defined as the point for which the current par-
ticipant reported that the pain was getting unbearable. Additional intermediate
pain intensity levels, denoted by H2 and E2, are defined as the mean values of
H1 and H3, as well as the mean of E1 and E3, respectively. Each pain stimulus
was followed by a non-painful stimulus, the so-called baseline (B), which was
set to 32 ◦C. The phasic baseline has a random length between 8 and 12 s. Simi-
larly, each tonic pain stimulus was followed by the baseline stimulus, with a fixed
duration of 300 s. All biopotentials were sampled with 1000 Hz. In total, each
subject was exposed to all four pain stimuli categories in a randomised order,
for about 90 min, during one single recording session. Each phasic stimulus was
induced 30 times per intensity, whereas each tonic stimulus was induced only
once per intensity. In the current work, we focus on the physiological signals,
in combination with the phasic stimuli. Note that in contrast to the description
from the database paper [3], the phasic heat pain stimuli were always induced
with a duration of 4 s (not 5 s).
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3.2 Signal Preprocessing

We removed a total of nine participants – with the corresponding test subject
IDs 1, 14, 23, 24, 25, 28, 30, 59 and 121 – due to technical issues, such as erro-
neous or missing data. To ensure that there is no overlap during the computation
of the features, for each of the temporal windows, we defined the following cri-
teria: minimum pain stimulus length of 3.9 s, minimum baseline duration of
8 s, each baseline has to follow a pain stimulus and the data of each subject
has to start with a valid pain stimulus followed by a baseline. We removed all
sequences, which violated at least one criterium. Moreover, the database con-
tains samples, which are labelled as −10 and −11. We removed those samples
from our experiments, due to the fact that they were not specified in [3]. A
third-order Butterworth bandpass filter was applied to the ECG and EMG sig-
nals. For ECG, we used cut-off frequencies of 0.1 Hz and 25 Hz. For EMG, we
used cut-off frequencies of 20 Hz and 250 Hz. No filter was applied to the EDA
channel.

3.3 Feature Extraction

The phasic heat and electric pain stimuli differ by 1 s in length. For a fair compar-
ison, we cut off the first second of each electric pain stimulus, such that both pain
stimuli types (heat and electric) are represented with a length of 4 s each. For
the baseline features, only the baselines which follow the H1 pain stimulus were
used. We followed the approaches of Werner et al. [12,13], for the computation
of time series based statistical descriptors.

In addition, we included the following descriptors, to each feature extraction
window and each channel (unless stated otherwise): zero crossing, variance of the
signal, maximum to minimum peak value ratio, root mean square (RMS) of the
signal, mean value of the local minima (only EMG and ECG channels), mean
value of the local maxima (only EMG and ECG channels), mean of the absolute
values, standard deviation of absolute values, peak to peak mean value (only
EMG and ECG channels), RMS of successive differences of R-Peaks (only ECG,
detected with the Hamilton-Detector [5,6]), standard deviation of the successive
differences of the R-peaks (only ECG, detected with the Hamilton-Detector),
RMS of the R-Peak differences (only ECG, also with the Hamilton-Detector).
Moreover, the features, which are stated in Table 1, were extracted from each sig-
nal. For the first and second derivatives, we additionally computed the following
descriptors: zero crossing, variation of the first momentum, variation of the sec-
ond momentum, variance, maximum to minimum peak value ratio, RMS, mean
of the absolute values, standard deviation of the absolute values and variance
of the second momentum. These are commonly used in this research area [4,8].
The whole feature extraction process led to a total of 405 features (ECG: 84,
EMG: 243, EDA: 78). Erroneous feature values (NaN or infinity) were replaced
with the mean value specific to the affected feature, subject and label, respec-
tively. In cases, where the calculation of the mean value was not possible, we
removed the corresponding feature vector. This resulted in a total amount of
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26,077 feature vectors. The minimal amount of feature vectors for at least one
test subject was 149. The maximal amount of feature vectors for at least one
test subject was 210. After the feature extraction process, we applied a person-
specific z-score standardization (zero mean with unit variance) on the combined
feature set.

Table 1. Additional features computed from the ECG, EMG and EDA chan-
nels. The signal is denoted by s with length N , whereas Xi denotes the i-th chunk of
s. The total number of equally sized chunks is denoted by k (in this work k = 4). The
standard deviation is denoted by σ.

Name Description

Variation first momentum μstds = 1
k−1

k∑

i=1

σ(Xi)

Variance second momentum Variance according to [2].

σ2
stds = 1

k−1

k∑

i=1

(σ(Xi) − μstds)
2

Variation second momentum σstds =
√

σ2
stds

Mean value first differences 1
N−1

N−1∑

t=1

(st+1 − st)

Mean absolute value first differences 1
N−1

N−1∑

t=1

|st+1 − st|

Mean absolute value second differences 1
N−2

N−2∑

t=1

|st+2 − st|

3.4 Definition of Temporal Windows

Thiam et al. [8] showed that a temporal shift leads to an improvement of classi-
fication performance. Therefore, we analyse different combinations of temporal
window lengths and starting points. Note that we took the differing lengths
of heat and electric pain stimuli into consideration (see Sect. 3.3). By shiftxs,
we denote feature extraction windows (FEWs) with a length of 4 s, starting x
seconds after the starting point of a stimulus. Analogously, by shiftxs+.5s, we
denote the same FEW approaches, however with a length of 4.5 s. In this work,
we analyse seven different FEWs, i.e. shift0s, shift1s, shift2s, shift2.5s, shift3s,
shift1s+.5s, and shift2s+.5s. A visual overview is depicted in Fig. 1, for some of
the defined temporal windows.

4 Experiments and Results

Each approach described in Sect. 3.4 is evaluated by applying the leave-
one-subject-out cross-validation (LOSO-CV). We apply the random forest [1]
method, in combination with 100 decision tree classifiers, each with a maximum
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Fig. 1. Example of different time window approaches. Each plateau marks a
stimulus with its specific heat intensity level (y-axis) and its duration (x-axis in ms).
The highlighted regions mark the defined temporal windows. The last sub-plot depicts
a temporal window with a length of 4.5 s.

node depth of 10. These configurations are adopted from Werner et al. [13].
Thereby, the impurity of each split is measured by the Gini Index criterion.
Since the dataset is equally distributed across all classes, we focus on the sim-
ple accuracy as the performance measure. For the channel-wise evaluation, we
combined the EMG feature values specific to the corrugator, zygomaticus and
trapezius muscles to one feature vector (for each stimulus). For each temporal
window and each channel, we analyse the binary class label combinations B/H1,
B/H3 and H1/H3, as well as B/E1, B/E3 and E1/E3. In addition, we apply a
feature fusion, which combines the features from all channels. Subsequently, we
evaluate both of the four-class classification tasks, which are represented by the
class label sets {B, H1, H2, H3} and {B, E1, E2, E3}, respectively. Heat and
electric pain stimuli are treated separately, in all cases. To test for statistically
significant differences, we apply the two-sided Wilcoxon signed-rank test [15]
(discarding zero-differences). The significance level is set to 5%.

In Table 2, we present the LOSO-CV mean accuracy values, specific to the
heat pain stimuli, in combination with all binary classification tasks. Table 2
includes the results for each channel, as well as the feature fusion approach.
The mean accuracy for the ECG signal increases in general, when the temporal
feature extraction window is shifted. In a few cases, the mean accuracy slightly
drops. For the EMG signal, we observe minimal fluctuations, specific to the
different temporal feature extraction windows. With an advanced shift of the
temporal feature extraction window, the mean accuracy for the EDA signal
increases as well (for each label combination). This observation differs for the
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outcomes based on the ECG signal. Regarding the feature fusion, an increase of
the mean accuracy is observed in all binary tasks, except for B vs. H1.

In Table 3, we present the LOSO-CV mean accuracy values, specific to the
electric pain stimuli, in combination with all binary classification tasks. Table 3
includes the results for each channel, as well as the feature fusion approach. For
all channels, there is a tendency for a decrease, concerning the mean accuracy
(with a few exceptions). The tendency is associated with the shift of the temporal
feature extraction window.

In Table 4, we present the LOSO-CV mean accuracy values, specific to the
heat and electric four-class tasks. The classification results are listed for each

Table 2. Binary heat pain classification tasks: single modalities and feature
fusion. The LOSO-CV mean accuracy and standard deviation values are presented in
%. The best performing temporal window approach is highlighted in bold. An asterisk
(*) indicates a significant change over the shift0s approach, according to a two-sided
Wilcoxon signed-rank test, at a significance level of 5%. The different temporal window
approaches (column labels) are defined in Sect. 3.4.

shift0s shift1s shift2s shift2.5s

B/H1

ECG 50.86 ± 06.61 51.87 ± 06.13 51.27 ± 07.20 50.79 ± 06.33

EMG 51.07 ± 07.94 50.98 ± 07.40 52.13 ± 06.64 50.59 ± 06.19

EDA 56.29 ± 08.07 56.49 ± 08.78 56.53 ± 09.01 57.26 ± 08.92

Fusion 55.82 ± 07.18 55.60 ± 08.07 56.15 ± 09.36 56.85 ± 09.00

B/H3

ECG 57.39 ± 10.19 61.61 ± 13.03* 64.92 ± 14.15* 65.67 ± 15.55*

EMG 75.90 ± 16.89 78.34 ± 17.43* 78.22 ± 17.24* 78.69 ± 16.75*

EDA 67.42 ± 13.53 74.05 ± 14.97* 79.45 ± 14.55* 81.55 ± 14.29*

Fusion 77.08 ± 16.35 81.25 ± 16.05* 83.25 ± 14.89* 84.56 ± 14.02*

H1/H3

ECG 56.21 ± 10.34 61.45 ± 12.88* 64.24 ± 15.04* 65.57 ± 15.73*

EMG 74.87 ± 17.15 78.33 ± 16.79* 77.95 ± 17.27* 77.95 ± 17.07*

EDA 62.83 ± 12.27 68.88 ± 13.59* 74.12 ± 14.15* 76.06 ± 14.71*

Fusion 75.86 ± 16.57 79.18 ± 16.12* 80.15 ± 15.78* 80.82 ± 15.82*

shift0s shift3s shift1s+.5s shift2s+.5s

B/H1

ECG 50.86 ± 06.61 51.51 ± 06.89 52.13 ± 06.34 52.48 ± 06.69

EMG 51.07 ± 07.94 51.86 ± 05.98 51.84 ± 06.78 51.84 ± 06.94

EDA 56.29 ± 08.07 57.01 ± 08.87 57.29 ± 09.28 58.30 ± 09.07*

Fusion 55.82 ± 07.18 57.18 ± 08.93 57.45 ± 08.50* 57.68 ± 08.88*

B/H3

ECG 57.39 ± 10.19 66.93 ± 15.19* 63.00 ± 13.74* 65.69 ± 14.86*

EMG 75.90 ± 16.89 78.69 ± 16.89* 78.93 ± 16.99* 78.74 ± 16.66*

EDA 67.42 ± 13.53 82.21 ± 14.54* 77.15 ± 14.52* 81.57 ± 14.33*

Fusion 77.08 ± 16.35 85.19 ± 13.63* 82.28 ± 15.51* 84.63 ± 13.93*

H1/H3

ECG 56.21 ± 10.34 66.33 ± 15.71* 62.94 ± 13.97* 65.33 ± 15.28*

EMG 74.87 ± 17.15 78.43 ± 17.10* 78.34 ± 17.15* 78.09 ± 17.25*

EDA 62.83 ± 12.27 76.86 ± 14.74* 71.02 ± 14.08* 75.69 ± 14.37*

Fusion 75.86 ± 16.57 81.56 ± 15.63* 79.44 ± 15.72* 80.63 ± 15.54*
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channel and the feature fusion. We can observe similar characteristics, as we
discussed above for the binary classification tasks.

The significant changes between shift0s and all other temporal feature extrac-
tion windows, are computed with the Wilcoxon signed-rank test [15] (significance
level of 5%). In Tables 2, 3 and 4, the significant changes are marked with an
asterisk (*).

Table 3. Binary electric pain classification tasks: single modalities and fea-
ture fusion. The LOSO-CV mean accuracy and standard deviation values are pre-
sented in %. The best performing temporal window approach is highlighted in bold. An
asterisk (*) indicates a significant change over the shift0s approach, according to a two-
sided Wilcoxon signed-rank test, at a significance level of 5%. The different temporal
window approaches (column labels) are defined in Sect. 3.4.

shift0s shift1s shift2s shift2.5s

B/E1

ECG 57.41 ± 11.40 57.42 ± 11.76 56.66 ± 10.51 57.21 ± 10.19

EMG 68.20 ± 17.38 64.71 ± 16.56* 63.02 ± 15.83* 62.12 ± 15.64*

EDA 66.38 ± 14.87 63.79 ± 15.00* 60.64 ± 13.26* 59.78 ± 12.10*

Fusion 71.13 ± 16.67 69.08 ± 15.45* 65.87 ± 15.22* 65.03 ± 15.75*

B/E3

ECG 79.79 ± 15.61 79.61 ± 15.72 78.16 ± 15.80* 77.30 ± 15.58*

EMG 88.56 ± 12.05 86.98 ± 12.27* 87.05 ± 12.24* 86.67 ± 12.96*

EDA 90.10 ± 11.86 90.02 ± 11.57 86.25 ± 12.68* 85.30 ± 12.81*

Fusion 92.85 ± 09.56 92.80 ± 09.59 91.27 ± 09.79* 90.72 ± 10.24*

E1/E3

ECG 75.81 ± 14.07 75.36 ± 13.87 74.03 ± 13.78* 72.69 ± 13.86*

EMG 82.86 ± 14.47 81.64 ± 14.60* 81.76 ± 14.76 80.78 ± 15.56*

EDA 84.62 ± 10.72 84.65 ± 11.20 82.46 ± 12.54* 81.70 ± 12.77*

Fusion 88.58 ± 10.61 87.84 ± 11.02* 86.56 ± 11.86* 86.13 ± 12.41*

shift0s shift3s shift1s+.5s shift2s+.5s

B/E1

ECG 57.41 ± 11.40 56.76 ± 10.04 57.45 ± 11.58 57.75 ± 10.65

EMG 68.20 ± 17.38 62.45 ± 15.53* 64.31 ± 15.78* 63.38 ± 15.10*

EDA 66.38 ± 14.87 58.90 ± 11.80* 64.29 ± 14.76* 61.48 ± 13.24*

Fusion 71.13 ± 16.67 64.58 ± 14.59* 69.22 ± 14.85* 66.12 ± 14.48*

B/E3

ECG 79.79 ± 15.61 76.00 ± 15.55* 79.71 ± 15.49 78.19 ± 15.70*

EMG 88.56 ± 12.05 85.90 ± 13.11* 86.91 ± 12.33* 86.81 ± 12.44*

EDA 90.10 ± 11.86 83.67 ± 13.44* 89.99 ± 11.65 87.08 ± 11.63*

Fusion 92.85 ± 09.56 90.13 ± 10.86* 93.05 ± 09.46 91.65 ± 09.77*

E1/E3

ECG 75.81 ± 14.07 71.52 ± 13.48* 75.05 ± 13.92 73.75 ± 13.50*

EMG 82.86 ± 14.47 80.28 ± 15.06* 82.13 ± 14.33 81.65 ± 14.79*

EDA 84.62 ± 10.72 80.67 ± 12.98* 84.59 ± 11.94 82.36 ± 12.51*

Fusion 88.58 ± 10.61 85.52 ± 12.31* 87.77 ± 11.26* 86.39 ± 12.05*
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Table 4. Four-class heat and electric pain classification tasks: single modali-
ties and feature fusion. The LOSO-CV mean accuracy and standard deviation values
are presented in %. The best performing temporal window approach is highlighted in
bold. An asterisk (*) indicates a significant change over the shift0s approach, according
to a two-sided Wilcoxon signed-rank test, at a significance level of 5%. The different
temporal window approaches (column labels) are defined in Sect. 3.4.

shift0s shift1s shift2s shift2.5s

Heat

ECG 28.52 ± 05.72 30.91 ± 07.18* 32.27 ± 08.30* 32.81 ± 08.01*

EMG 38.59 ± 10.03 40.01 ± 10.39* 40.04 ± 10.02* 40.38 ± 09.41*

EDA 34.51 ± 08.00 38.50 ± 09.19* 41.27 ± 09.76* 42.52 ± 10.16*

Fusion 40.56 ± 09.78 42.95 ± 10.64* 43.80 ± 10.42* 44.31 ± 10.57*

Electric

ECG 43.07 ± 11.90 42.97 ± 12.03 41.55 ± 11.30* 40.39 ± 10.78*

EMG 53.47 ± 15.15 51.02 ± 14.16* 49.56 ± 13.68* 48.89 ± 13.50*

EDA 52.76 ± 12.96 52.25 ± 13.31 48.76 ± 12.21* 47.68 ± 11.79*

Fusion 59.84 ± 14.33 58.43 ± 13.63* 55.51 ± 12.82* 54.22 ± 13.07*

shift0s shift3s shift1s+.5s shift2s+.5s

Heat

ECG 28.52 ± 05.72 33.47 ± 08.34* 31.73 ± 07.55* 33.27 ± 08.38*

EMG 38.59 ± 10.03 40.89 ± 09.24* 40.86 ± 09.84* 39.84 ± 09.90*

EDA 34.51 ± 08.00 43.27 ± 09.53* 40.07 ± 10.27* 42.97 ± 10.08*

Fusion 40.56 ± 09.78 45.12 ± 10.83* 43.57 ± 10.55* 44.55 ± 10.53*

Electric

ECG 43.07 ± 11.90 39.98 ± 11.13* 42.80 ± 11.63 41.52 ± 11.24*

EMG 53.47 ± 15.15 49.51 ± 12.99* 50.76 ± 14.18* 49.63 ± 13.57*

EDA 52.76 ± 12.96 46.45 ± 11.29* 52.69 ± 13.16 49.50 ± 11.83*

Fusion 59.84 ± 14.33 53.79 ± 12.93* 58.68 ± 13.49* 55.47 ± 13.11*

5 Discussion and Future Work

In this work, we evaluated different temporal feature extraction windows for heat
and electric pain stimuli using the random forest method [1], based on the X-ITE
Pain Database [3]. Higher accuracy values, based on LOSO-CV, were achieved
for the classification tasks, in combination with electric pain stimuli.

For the shifted temporal windows (see Sect. 3.4), the mean accuracy
increased, in combination with the heat pain stimuli. Especially, the features
of the EDA signal benefited from a temporal shift. Due to the fact that heat
needs time to decrease, valuable information can be found by applying a shift.
This was also shown by Thiam et al. [8]. For the B vs. H3 setting, the EDA-based
mean accuracy value significantly increased by 14.79%, in combination with the
shift3s approach (with respect to shift0s). The mean accuracy increased also for
the ECG and EMG signals. The lowest improvement was reported for the EMG
signal (2.32%). Temporal shifts led to significant improvements in most of the
cases, with respect to shift0s. Similar findings were observed for the heat pain
four-class task.
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The classification performance, in combination with electric pain stimuli,
decreased when a temporal shift was applied. In contrast to the heat pain clas-
sification, ECG-based and EMG-based mean accuracy values decreased, in com-
bination with the shift3s approach (with respect to shift0s). For the B vs. E3
setting, the mean accuracy decreased by 3.79%, in combination with the ECG
signal and the shift3s approach. The EMG-based mean accuracy decreased by
2.66%. The temporal shift denoted by shift3s led to the most significant decrease
of the mean accuracy (6.43%), with respect to the EDA signal. Similar findings
were observed for the electric pain four-class task.

The temporal shift denoted by shift3s led to a significant reduction of the
mean accuracy values, with respect to shift0s. This observation was also made, in
combination with the other defined shifts. A reason for the observed differences
between heat and electric pain classification, with respect to the described shifts,
lies in the nature of the stimuli. Electrical pain starts and stops instantly. In con-
trast, the rise and fall in temperature for induced heat stimuli takes time. Apply-
ing temporal shifts seems to include important information, which is obtained
during the decrease of the temperature [8]. Werner et al. [13] showed that clas-
sification based on phasic electric pain stimuli results in higher accuracy values,
in comparison to classification on phasic heat pain stimuli. This is due to the
fact, that electric pain stimuli are felt instantly. Our outcomes strengthen this
assumption. Regarding the different temporal feature extraction windows, the
application of shift0s resulted in higher performance values for phasic electric
pain classification. Furthermore, we believe that because an electric pain stimu-
lus ends instantly, the body of a test subject is instantly relieved as well. This
indicates that less information is found when a temporal shift is applied, which
is also reflected by the reported mean accuracy values (see Table 3). We pro-
pose extracting features for heat pain stimuli with an application of a temporal
shift. Contrary, features from electric pain stimuli should be extracted without
an application of a temporal shift.

For future work, we aim to examine the detailed effects of temporal feature
extraction windows, with respect to the separate EMG signals. We also want
to focus on the feature importance and its correlation, with respect to different
temporal shifts. Additional work on window length variations should be carried
out as well.
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Abstract. Pain intensity recognition still constitutes a challenging clas-
sification task. In this work, we focus on the physiological signals of the
publicly available BioVid Heat Pain Database, which was collected at
Ulm University. The BioVid Heat Pain Database consists of different
recordings of healthy test subjects that were exposed to various short-
time heat stimuli. The results reported in the literature, which are based
on those short-time sequences do not justify the implementation of auto-
mated pain detection systems, due to unsatisfactory accuracy rates. In
the current study, we show that the outcomes, which are stated in the
literature, most likely represent lower bound estimations. For this pur-
pose, we transfer the classification task, which is provided by the BioVid
Heat Pain Database, to a real-world scenario. More precise, according
to an expected hospital setting, we analyse the automated pain inten-
sity recognition approach in combination with different sets of short-
time sequences. Our outcomes indicate, that in real-world applications,
where the detection of pain intensity is based on more than one single
short-time sequence, the accuracy values can be significantly improved.
In the current study, the classification performance of bagged decision
tree ensembles is evaluated, based on a person-independent scenario.

Keywords: Pain intensity recognition · Physiological signals

1 Introduction

Pain detection, or more precise pain intensity recognition, constitutes an impor-
tant up-to-date topic of machine learning based medical applications. The aim
of implementing automated pain assessment devices is to have the ability to
correctly classify different levels of pain, of patients that are not able to commu-
nicate the current state of their medical condition. This applies, for example, to
newborns or people suffering from dementia. Automated pain detection systems
would not only help the affected patients, but also facilitate the work of doctors
and nurses.
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Some researchers collected pain-related data sets, such as the publicly avail-
able UNBC-McMaster Shoulder Pain Expression Archive Database (SPDB) [12],
or the SenseEmotion Database (SEDB) [21]. While the SPDB includes different
recordings specific to participants that were suffering from shoulder pain, the
SEDB includes recordings specific to healthy test subjects that participated in
strictly controlled pain elicitation experiments.

In the current study, we focus on the evaluation of data specific to healthy
participants that were exposed to thermal stimuli. Usually, such kind of pain
elicitations are applied in form of short-time sequences, mostly only covering a
temporal range of a couple of seconds. However, identifying different levels of
pain, based on short-time sequences, does not reflect a hospital-related real-world
scenario. Therefore, in this study, we show that short-time recordings might
be used to implement automated pain intensity recognition systems, which are
based on long-time recordings (with lengths of up to 80 s).

Note that there are real-world application scenarios, such as examination-
induced pain, for which short time sequences play an essential role. Thus, reliable
short time sequences based classification models still cover an important research
field of machine learning based pain assessment.

The remainder of this work is organised as follows. For a better understanding
of the related work part, we first shortly describe the BioVid Heat Pain Database,
in Sect. 2. We then provide some related work on pain intensity recognition, in
Sect. 3. Subsequently, in Sect. 4, we present our approach for a real-world setting
and define our evaluation protocol. The experimental results are presented and
discussed in Sect. 5. Finally, in Sect. 6, we conclude the current work.

2 The BioVid Heat Pain Database

The BioVid Heat Pain Database (BVDB) [22] was recorded at Ulm University,
to support the research fields of automated pain detection and emotion recog-
nition. In this work, we focus on Part A of the BVDB1, which constitutes a
pain intensity recognition task. Interestingly, such kind of databases can also
be used to evaluate the effectiveness of physiological signals, in different person
identification scenarios [3].

2.1 Description

Healthy test subjects were recruited to participate in the multi-modal data acqui-
sition experiments. For Part A of the BVDB, the recordings specific to 87 par-
ticipants are available. Pain was induced in form of heat with the use of a Medoc
thermode2, under strictly controlled conditions.

In the first step of the experiments, each participant had to undergo an
individual calibration phase, which led to four equidistant participant-specific

1 Publicly available at http://www.iikt.ovgu.de/BioVid.print.
2 More information at https://www.medoc-web.com/pathway.

http://www.iikt.ovgu.de/BioVid.print
https://www.medoc-web.com/pathway
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levels of pain, denoted by T1, T2, T3 and T4. The global pain-free level was set to
32 ◦C (T0), for each participant. Figure 1 provides an illustration of an exemplary
recording sequence.
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4 s 4 s8− 12 s Time
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Fig. 1. An exemplary pain elicitation sequence.

Subsequently, each participant was stimulated 20 times with each of the
predefined pain levels, in randomised order, for a duration of four seconds. In
between two pain-related sequences, each participant was stimulated with the
pain-free level, for a random duration of 8−12 s.

During the pain elicitation experiments, videos from three different angles,
as well as different physiological signals, were recorded. In the current study, we
focus on the biopotentials. These include the electrocardiogram (ECG), which
measures a person’s heart activity, and the electromyogram (EMG), which mea-
sures the muscle activity. In part A of the BVDB, the activity of the trapezius
muscle was recorded, which is located in the shoulder area of a human torso.
Moreover, sensors that were attached to the participants’ ring and index fin-
gers led to recordings of electrodermal (EDA) signals, which measure the skin
conductance. For a full data set description, we refer the reader to [22].

Table 1. Properties of the BVDB. Total number of samples: 8700 (87 × 5 × 20).
Total number of features: 194 (68 + 56 + 70).

Number of participants 87 (43 f, 44 m)

Number of classes 5 (T0, . . . , T4)

Number of samples per class per participant 20

Feature dimension of ECG 68

Feature dimension of EMG 56

Feature dimension of EDA 70
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2.2 Feature Extraction

Feature extraction is not part of our current contribution. Therefore, we refer
the reader to [8] and [9], for the analysis of feature extraction and normalisa-
tion of the physiological signals of the BVDB. Note that in the current study,
we are using exactly the same features. All features were extracted from win-
dows of 5.5 s. The extraction of features included the computation of statistical
descriptors, such as mean and extreme values from the temporal and frequency
domains. Moreover, also signal-specific descriptors, such as the ECG-related P,
Q, R, S, and T wavelets based features, were implemented.

The properties of the BVDB are summarised in Table 1.

3 Related Work on Pain Intensity Recognition

In the current section, we shortly present some of the many existing approaches,
which were analysed in combination with the pain intensity recognition task.

One basic step in building a robust classification model is the choice of an
appropriate fusion approach [15]. In cases, where the data is available spe-
cific to only a few recording signals/channels/modalities, one should focus on
an early fusion (EF) architecture [2]. In the EF approach, the data from all
recording sources is concatenated to one feature vector and fed to the classifica-
tion model. In cases, where the data specific to several modalities (e.g. audio,
video and different biopotentials) is available, one can make use of many existing
intelligent late fusion architectures. As an example, in [17], the authors evaluate
different pseudo inverse [13] based classification architectures [14], for different
pain intensity recognition tasks, based on the SenseEmotion Database.

One effective way to improve the classification performance in a pain intensity
classification task, is the application of so-called personalisation techniques
[8,9,18]. Thereby, one makes use of the known (and unlabelled) data of the
current test subject. Based on its data distribution and a predefined similarity
or distance measure (e.g. Hausdorff distance [7]), one can determine a subset
of training subjects, which are used to train the classification model, similar to
an on-line setting. Usually those classification models outperform the models,
which are trained on all available training data samples.

Kessler et al. propose to include remote photoplethysmography (rPPG),
for the pain intensity recognition task [10,11]. The rPPG signal can be used as
an additional physiological input modality for the detection of a participant’s
heart and respiration rates. The main idea is to filter the rPPG signal in multiple
frequency ranges. Thereby, the authors make use of the fact that the rPPG signal
consists of three colour channels, i.e. red, green and blue.

Moreover, one can define different classifier-specific data transformation
mappings to improve the accuracy of the current classification model. Thereby,
the transformation mappings are applied to the extracted features. As an exam-
ple based on the SenseEmotion Database, in [1], the authors propose a so-called
unsupervised quartile-based data transformation (QBDT), which maps each fea-
ture value to a corresponding element of the set {−2,−1, 1, 2}. The outcomes



Pain Intensity Recognition in a Real-World Scenario 153

in [1] show that using the corresponding transformed feature values significantly
improved the classification performance of basic nearest neighbour classifiers [6].

Following the current trend in machine learning, one can also implement
deep models (DMs), for the pain intensity classification task. Thiam et al. anal-
ysed different DMs, in combination with physiological signals [16,19] and video
sequences [20]. Thereby, the authors followed the so-called end-to-end approach,
which constitutes an alternative to hand-crafted features based approaches. An
end-to-end architecture is trained on (filtered) raw signals. Thus, there is no need
for manual feature extraction, which requires modality-specific expert knowl-
edge, in general.

We refer the reader to [23], for a recently published survey article on auto-
mated pain assessment methods, presented by Werner et al.

4 Evaluation Protocol

In the current section, we first present our approach for using short-time stimuli
in real-world applications. Subsequently, we provide a list of settings, which will
be included in the upcoming experimental evaluations.

4.1 Real-World Scenario

It is legitimate to assume that in a real-world application, i.e. in a hospital
setting, automated pain detection devices will not evaluate a patient’s condition
based on one single short-time sequence. It is most likely that a pain detection
system will provide its final decisions based on long-time sequences or on sets
of short-time sequences. The BVDB consists of short-time sequences, therefore,
we will evaluate the latter approach.

Note that in the BVDB, each participant constitutes a data subset, with 20
samples per class (see Sect. 2.1). Each of the samples reflects a heat stimulus of a
duration of four seconds. Moreover, all of the samples were obtained during one
single recording session, for each participant. Therefore, according to a real-world
scenario, in this study, we evaluate the automated pain assessment approach
based on different-sized sets of those samples. Note that since all recordings
were collected in the course of a single experiment, the combinations of short-
time sequences are expected to represent good approximations for consecutive
long-time sequences.

By n ∈ N, we denote the number of samples, which are combined to predict
a participant’s current pain level. Therefore, only samples specific to the test
participant and to one single class are combined. Moreover, to include all of the
initial samples from the test set, we restrict n to the set N := {1, 2, 4, 5, 10, 20}.
Note that each participant’s data subset contains 20 samples per class. Moreover,
20 is divisible without remainder by each element of N .

For each test subject, and for each n ∈ N , we randomly draw n samples
without replacement, combine them to one set and define the corresponding
set of samples as a new data point. This procedure is repeated until the set of
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initial samples is empty, for each class of the current participant. For n = 1, the
data specific to the test subject remains unchanged. For n = 2, two randomly
combined initial samples, specific to the current participant’s class, define a new
data point. Therefore, for n = 2, each test set participant constitutes a data
subset consisting of 50 samples, including 10 samples per class. For n = 20, each
participant constitutes a data subset consisting of solely 5 samples (1 per class).

Note that only the samples from the test set are combined to new data
points. The implemented classification model is always trained on the initial, i.e.
non-combined, data samples.

4.2 Experimental Settings

In our experiments, we apply the following settings.

Evaluation Approach. We apply the leave-one-person-out (LOPO) cross val-
idation. Thereby, in iteration i, the data specific to participant i is used as the
test, whereas the data specific to all remaining participants is used as the training
set.

Classification Model. We apply the bagging method [4], in combination with
200 unpruned decision tree classifiers [5], with the Gini index as impurity mea-
sure, using the MATLAB3 software. Note that in this study, we focus on the early
fusion approach. Thereby, the data specific to ECG, EMG and EDA recordings
is concatenated to one feature vector, for each sample.

Performance Measure. Since the BVDB constitutes a balanced data set, i.e.
the amount of samples is equal for each class, we focus on the unweighted accu-
racy (acc), i.e.

acc =
number of correctly classified test samples

total number of test samples
.

We also provide class-specific accuracy values, in form of confusion matrices.

Significance Tests. We apply the two-sided Wilcoxon signed-rank test [24], at
a significance level of 5%.

Definition of Tasks. Moreover, we define the following two classification tasks.
An automated pain intensity recognition system should, at least, be able to
correctly differentiate between the no-pain level and the highest level of pain.
Therefore, we will first evaluate the binary task, T0 vs. T4. In the multi-class task,
we include all available classes to evaluate the class-specific accuracy values. Note
that for this task, the chance level accuracy is equal to 20%.

3 https://www.mathworks.com/products/matlab.html.

https://www.mathworks.com/products/matlab.html
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5 Results

In the current section, we first provide the results for the binary task. Subse-
quently, we present the results for the multi-class task, including discussions of
the obtained outcomes. Note that we evaluate the BVDB in combination with
the set N , which we defined as N = {1, 2, 4, 5, 10, 20}. Thereby, n ∈ N denotes
the number of initial samples (from the same class) from the current test set,
which are combined to represent a corresponding new data point.

The classification model is always trained on the initial samples. We clas-
sify a set of samples (new data point) by classifying each of the samples from
the current set separately, and applying the simple mean-rule to the obtained
class-specific scores. The final prediction of the classification model corresponds
to the class with the highest score. Note that a more straightforward approach
would be to predict the labels for each of the samples, and to apply the major-
ity vote. However, since most elements from the set N are even numbers, we
might obtain many indecisive votes in the binary tasks, leading to many ran-
dom guesses. Therefore, we chose to implement the class-specific scores based
mean-rule approach.

By Cn, we denote the confusion matrix specific to n ∈ N . The rows of Cn

represent the true labels, whereas the columns of Cn represent the predicted
labels. Moreover, we focus on the percentage values of each Cn, for a better
comparison. Thus, the row elements of each Cn sum up to 100 (The sum is not
always exactly equal to 100, since we state the corresponding rounded values).
For the confusion matrices, we present the natural order of the rows and columns,
i.e. the first row and column correspond to T0, the second to T1, etc.

5.1 Evaluation of the Binary Task

Table 2 states the averaged LOPO accuracy and standard deviation values, for
the defined binary task. From Table 2, we obtain the following observations.
Except for n = 5, the averaged accuracy values are monotonously increasing,
in combination with an ascending number of combined test samples n. The
difference between the obtained mean accuracy values, for n = 4 and n = 5, is not
significant. For n = 20, we note an improvement in accuracy of approximately
14%, with comparison to n = 1. Moreover, for each n �= 1, the improvement
is statistically significant, in comparison to n = 1, according to a two-sided
Wilcoxon signed-rank test, at a significance level of 5%.

Figure 2 provides the obtained box plots for all n ∈ N . From Fig. 2, we
can observe that not only the mean accuracy values improved, but also the
corresponding median values, with respect to n = 1. For n ∈ {4, 5, 10, 20}, the
median accuracy values are equal to 100%.
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Table 2. T0 vs. T4 Task: Averaged Leave-One-Person-Out accuracy and stan-
dard deviation values in %. The figures in the upper row (n) denote the number
of stimuli that are defined as one sample. For all n �= 1, the accuracy values improved
significantly over n = 1, according to a two-sided Wilcoxon signed-rank test, with
p < 0.05.

n = 1 n = 2 n = 4 n = 5 n = 10 n = 20

82.27 ± 14.5 87.13 ± 14.9 91.84 ± 13.1 91.67 ± 14.6 94.54 ± 12.9 96.56 ± 12.7
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Fig. 2. T0 vs. T4 Task: LOPO accuracy values. LOPO: Leave-One-Person-Out.
The mean and median values are denoted by a dot and a horizontal line, respectively.
For n ∈ {4, 5}, the median values, as well as the upper quartile values, are all equal to
100%. For the two box plots on the right-hand side, the median values, the lower and
upper quartiles, and both whiskers are all equal to 100%.

The corresponding confusion matrices, for the LOPO cross validation evalu-
ation approach, are defined as follows,

C1 =
(

85.5 14.5
20.9 79.1

)
, C20 =

(
89.4 10.6
15.2 84.8

)
, C40 =

(
93.1 6.90
9.40 90.6

)
,

C5 =
(

92.5 7.50
9.20 90.8

)
, C10 =

(
95.4 4.60
6.30 93.7

)
, C20 =

(
97.7 2.30
4.60 95.4

)
.

For n = 1, the class-specific accuracy values are equal to 85.5% and 79.1%, for
T0 and T4, respectively. Whereas for n = 20, the accuracy values for the classes
T0 and T4 are equal to 97.7% and 95.4%, respectively. These values denote the
maxima across all computed confusion matrices.

5.2 Evaluation of the Multi-Class Task

Table 3 states the averaged LOPO accuracy and standard deviation values,
for the multi-class task. From Table 3, we obtain the following observations.
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The accuracy values are monotonously increasing, in combination with an
ascending number of combined test samples n. For n = 20, we note an improve-
ment in accuracy of approximately 14%, with comparison to n = 1. Moreover,
for each n �= 1, the improvement is statistically significant, in comparison to
n = 1, according to a two-sided Wilcoxon signed-rank test, at a significance
level of 5%. The smallest improvement is observed by changing the value of n
from 4 to 5. This corresponds to the smallest change of n, in our experiments.
In contrast to the binary task, the averaged standard deviation accuracy values
also increased monotonously.

Table 3. Multi-Class Task: Averaged Leave-One-Person-Out accuracy and
standard deviation values in %. The figures in the upper row (n) denote the
number of stimuli that are defined as one sample. For all n �= 1, the accuracy values
improved significantly over n = 1, according to a two-sided Wilcoxon signed-rank test,
with p < 0.05. Chance level accuracy: 20%.

n = 1 n = 2 n = 4 n = 5 n = 10 n = 20

37.60 ± 10.7 41.40 ± 12.7 44.60 ± 15.0 45.98 ± 15.4 49.31 ± 17.0 51.49 ± 23.7
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Fig. 3. Multi-Class Task: LOPO accuracy values. LOPO: Leave-One-Person-Out.
The mean and median values are denoted by a dot and a horizontal line, respectively.

Figure 3 provides the obtained box plots for n ∈ N . From Fig. 3, we can
observe that not only the mean accuracy values improved, but also the corre-
sponding median values, with respect to n = 1. For n = 20, the accuracy values
range from 0% to 100%, in the current task. Note that for n = 20, each test
subject (participant) is represented by solely five data samples (one sample per
class).
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For the multi-class scenario, we focus on the confusion matrices C1 (reflects
testing on the initial data set) and C20, which contain the following values:

C1 =

⎛
⎜⎜⎜⎜⎝

48.8 23.3 13.6 9.30 5.10
27.3 31.1 19.4 15.1 7.10
19.6 26.2 21.0 20.3 12.9
11.3 15.7 18.9 27.8 26.3
4.10 6.60 11.0 19.0 59.3

⎞
⎟⎟⎟⎟⎠ , C20 =

⎛
⎜⎜⎜⎜⎝

59.8 19.5 11.5 9.20 0.00
20.7 48.3 19.5 11.5 0.00
6.90 34.5 27.6 24.1 6.90
2.30 6.90 16.1 43.7 31.0
0.00 0.00 2.30 19.5 78.2

⎞
⎟⎟⎟⎟⎠

By comparing C1 to C20, we can make the following observations. The aver-
aged accuracy improved for each of the five classes (see the diagonal elements,
denoted in bold for better readability). The lowest improvement was obtained for
the class T2 (third row and column, of the matrices C1 and C20). For n = 20 and
the class T2, the misclassification with neighbouring classes increased (denoted
by red (C20) and blue (C1), in the colour print). We can clearly see that the
class T2 is more often misclassified as T1 and T3, for n = 20. However, the cru-
cial classification errors decreased, for n = 20. As an example, for n = 1, the
class T0 (no pain at all) was misclassified as T4 (highest level of pain), with a
rate of 5.10%. Class T4 was misclassified as T0, with a rate of 4.10%. On the
other hand, for n = 20, the highest level of pain (T4) was never classified as
the pain-free (T0) level or the lowest level (T1) of pain (see last row of matrix
C20). Moreover, the classes T0 and T1 were both never misclassified as the class
T4 (see last column of matrix C20).

Note that the classes are clearly ordered, according to their natural occur-
rence, i.e. T0 < . . . < T4. Therefore, the 5-class classification task can also be
formulated as a regression task, including other performance metrics, such as the
mean absolute error or the root mean squared error, which is applied for exam-
ple in [9]. In the current study, we focused on the simple accuracy to keep the
performance measure consistent for both tasks, i.e. the binary and multi-class
task.

5.3 Discussion

For both, the binary as well as the multi-class classification tasks, the aver-
aged LOPO accuracy improved from 82.27% to 96.56% and from 37.60% to
51.49% respectively, when using a set of 20 short-time stimuli sequences instead
of one single sequence (see Tables 2 and 3). The median LOPO accuracy values
improved also significantly, even more than the mean values (see Figs. 2 and 3).
The results reported in the literature, which are based on the initial data sam-
ples, i.e. on single short-time sequences, could indicate that we are still far away
from reliable automated pain intensity detection systems. However, combining
random sets of participant- and class-specific samples to new data points (from
the test set), significantly improves the classification performance. Note that
for n = 20, for the binary task, we reached an outstanding averaged accuracy
value of 96.56% (see Table 2). Therefore, the reported values in the literature
might represent lower estimation bounds, for pain intensity recognition tasks, in
real-world applications.
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Note that the averaged accuracy increases with an ascending number of com-
bined samples n, because the classification performance is significantly above
chance level for n = 1.

6 Conclusion

In the current study, based on the physiological signals of the publicly available
BioVid Heat Pain Database, we evaluated the pain intensity recognition task, in
a simulated real-world scenario. For this purpose, we analysed the classification
transfer from short-time (4 s) stimuli sequences to artificially generated long-
time (4 × n s) sequences. Thereby, we showed that the classification accuracy
significantly improved when the classification model’s final decision was based
on sets of twenty short-time sequences (STS). Note that a set of 20 STS reflects
a recording duration of 80 s.

In general, it is safe to assume that in a real-world application, each pre-
diction provided by an automated pain intensity recognition system is based
on recordings (of e.g. physiological signals) that exceed the duration of four
seconds. Therefore, we showed that in a hospital setting, one might use long-
time sequences, randomly divide them into (non-overlapping) STS, and feed the
resulting sets of samples to a classification architecture, which is trained on STS.

We believe that the results, which are reported in the literature, represent
lower bound accuracy estimations for the pain intensity recognition task, because
they are based on the samples specific to STS. For the person-independent dif-
ferentiation of the neutral state and the highest pain level, we obtained a very
impressive accuracy value of 96.56%. On the other hand, this value might repre-
sent an upper bound accuracy estimation. In this work, we artificially combined
sets of STS to long-time sequences. In non-simulated real-world scenarios, long-
time sequences might lead to significantly different characteristics of a person’s
physiology. For example, a patient’s body functions might adapt to the persis-
tent pain, leading to changes in physiological signals, after a certain period of
time. Therefore, to be able to draw convincing conclusions, one has to collect
data in hospitals.

Acknowledgments. The work of Peter Bellmann and Friedhelm Schwenker is sup-
ported by the project Multimodal recognition of affect over the course of a tutorial learn-
ing experiment (SCHW623/7-1) funded by the German Research Foundation (DFG).
We gratefully acknowledge the support of NVIDIA Corporation with the donation of
the Tesla K40 GPU used for this research. Moreover, we thank the reviewers for their
constructive feedback, which helped to improve the current work.

References

1. Bellmann, P., Thiam, P., Schwenker, F.: Using a quartile-based data transforma-
tion for pain intensity classification based on the SenseEmotion database. In: 2019
8th International Conference on Affective Computing and Intelligent Interaction
Workshops and Demos (ACIIW), pp. 310–316 (2019)



160 P. Bellmann et al.

2. Bellmann, P., Thiam, P., Schwenker, F.: Multi-classifier-systems: architectures,
algorithms and applications. In: Pedrycz, W., Chen, S.-M. (eds.) Computational
Intelligence for Pattern Recognition. SCI, vol. 777, pp. 83–113. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89629-8 4

3. Bellmann, P., Thiam, P., Schwenker, F.: Person identification based on physiolog-
ical signals: Conditions and risks. In: ICPRAM, pp. 373–380. Scitepress (2020)

4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-

sion trees. Wadsworth (1984)
6. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf.

Theory 13(1), 21–27 (1967)
7. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using

the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)
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Abstract. In a standard mammography study, two views are acquired
per breast, the Cranio-Caudal (CC) and Mediolateral-Oblique (MLO).
Due to the projective nature of 2D mammography, tissue superposition
may both mask or mimic the presence of lesions. Therefore, integrat-
ing information from both views is paramount to increase diagnostic
confidence for both radiologists and computer-aided detection systems.
This emphasizes the importance of automatically matching regions from
the two views. We here propose a deep convolutional neural network
for the registration of mammography images. The network is trained
to predict the affine transformation that minimizes the mean squared
error between the MLO and the registered CC view. However, due to
the complex nature of the breast glandular pattern, deformations due
to compression and the paucity of natural anatomic landmarks, opti-
mizing the mean squared error alone yields suboptimal results. Hence,
we propose a weakly supervised approach in which existing annotated
lesions are used as landmarks to further optimize the registration. To this
aim, the recently proposed Generalized Intersection over Union (GIoU) is
exploited as loss. Experiments on the public CBIS-DDSM dataset show
that the network was able to correctly realign the images in most cases;
corresponding bounding boxes were spatially matched in 68% of the
cases. Further improvements can be expected by incorporating an elastic
deformation field in the registration network. Results are promising and
support the feasibility of our approach.

Keywords: Mammography · Image registration · Spatial
transformer · Convolutional neural networks

1 Introduction

Population screening by means of digital mammography was shown to reduce
mortality associated to breast cancer. However, the 2D projective nature of mam-
mography results in tissue superposition that may both mask and simulate the
presence of lesions [13,20]. This is especially true when breast tissue is very dense,
[18], as the fibrous and glandular components have higher attenuation than fatty
tissue, and more similar to that of potential lesions, especially masses.
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In a standard screening examination, two projection views are acquired for
each breast, named craniocaudal (CC) and mediolateral oblique (MLO) [3]. The
breast is positioned between two compression plates; in the MLO view, the
compression plates are rotated by 45◦–50◦, towards the axilla. The radiologist
is thus able to locate suspicious areas on both views by triangulating from these
projections. This increases the diagnostic confidence as false positives due to
tissue superposition are likely to disappear in the contralateral view. Computer
Aided Detection (CAD) algorithms have also shown reduced false positive rates
when the two views are taken into account [3,14,19].

The objective of our research is to design and evaluate a registration network
for CC-MLO registration based on emerging deep learning technologies. Appli-
cations range from enhancing image presentation to the radiologist, to improv-
ing the performance of lesion detection algorithms that operate on single-view
images [12,14,19]. Unfortunately, registration of the breast is considerably more
challenging than other imaging modalities as the soft tissues in the breast are
compressed and distorted during the acquisition [4]. To the best of our knowl-
edge, few authors have explored the registration of CC and MLO views, and no
established deep learning approach exists for this task [4,5].

Given the difficulty of estimating the deformation field between the CC and
MLO views, many works in literature have resorted to matching Regions of
Interest instead. The goal is not necessarily to establish the exact correspondence
between lesions, but to minimize the chance that true positives are matched with
false positive detections. This technique has largely been explored in combination
with CAD algorithms that detect candidate lesions, which are then matched
based on a combination of position and visual similarity. Visual similarity can
be estimated based on hand-crafted features such as texture, size, intensity, etc.
[19] or, with the advent of deep learning, by training a Siamese Convolutional
Neural Network (CNN) [14]. Compared to this standard candidate-matching
approach, our proposed registration technique works directly on the input image,
and can be applied before, after or independently of other lesion detection or
classification networks. At the same time, it is a flexible and versatile module
that can be incorporated and jointly trained in more complex pipelines.

Successfully training a registration CNN requires defining a robust loss while
reducing the cost of annotation [5]. To this aim, we augment the standard Mean
Squared Error (MSE) loss exploiting available lesion annotations in the form
of bounding boxes. The Generalized Intersection over Union (GIoU) forces the
registration to match true lesions across both views. Preliminary experiments
on the CBIS-DDSM dataset (presented in Sect. 5) with an affine transformation
support the feasibility of our approach.

2 Background and Related Work

2.1 Deep Learning for Medical Image Registration

Registration requires estimating the spatial coordinate transformation that max-
imizes some measure of similarity between two images, usually denoted as the
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fixed and moving images [4,12]. Conventional registration methods are based
on numerical optimization techniques, and may differ based on the domain of
the transformation (global, local), its nature (rigid, affine, or elastic) and the
optimization procedure [4,22].

Recently, CNN-based techniques have been proposed to regress the registra-
tion transformation from pairs of unregistered images [5]. Available solutions
include fully convolutional networks or encoder-decoder architectures for elastic
transformations [2,8,11,15] and Spatial Transformer Networks for affine trans-
formations [23]. For a comprehensive review on the topic, the reader is referred
to a recent survey by Haskins and colleagues [5].

Compared to traditional optimization approaches, CNN-based approaches
are poised to have a substantial advantage: even if the training process is slower
and requires hundreds or thousands of image pairs, at inference time it is usually
much faster than optimizing the transformation on each image pair.

One of the main obstacles to efficient CNN-based registration is defining a
suitable loss. In principle, the registration can be trained from image pairs, with-
out additional annotations, by defining a similarity metric, such as the MSE, and
a regularization term (registration is a generally ill-posed inverse problem). This
approach forms the basis of unsupervised approaches, such as Voxelmorph [2],
which has been applied to the registration of several imaging modalities, such
as brain, breast and cardiac magnetic resonance imaging [1]. However, defining
a robust image similarity measurement is notoriously challenging, especially in
the presence of different source modalities, anatomical deformations or temporal
changes [5,8]. Unlike common registration tasks in brain, cardiac or abdominal
images, mammography images are characterized by stronger changes in view-
point and high tissue deformation induced by organ compression; this fact makes
the task more complex and, to the best of our knowledge, the feasibility of reg-
istering mammographic images has yet to be established.

An alternative strategy is supervised training, which however requires mark-
ing an appropriate number of manually matched points. Such ground truth is
usually difficult and expensive to obtain in the medical domain. In our case,
the breast is highly compressible and lacks rigid structures, and hence very few
anatomical landmarks can be accurately matched. Large calcifications have been
used as landmarks for validating registration algorithms as their location and
correspondence can be determined very precisely [21]. However, collecting a large
number of such annotations would be time consuming, and such benign struc-
tures are usually disregarded in radiological reports.

Our methodology falls into the semi-supervised domain, exploiting existing
partial annotations. A similar strategy was successfully applied to train prostate
MR registration from organ segmentation maps [8]. Our setting is more chal-
lenging as we assume that only coarse bounding boxes are available for training.

Finally, our work shares some similarities with multi-task learning settings in
which the registration task is jointly learned with another task. For instance, Qin
et al. combined estimation of cardiac motion and segmentation for cardiac MRI
in a single network with shared weights [15]. Our approach is complementary
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since the bounding boxes, which are in any case an approximate ground truth,
are used to supervise directly the registration task.

MLO

CC

CNN

CNN

Localization 
Network

Registered CC 
and MLO

Transformation
Parameters 

Sampler

Grid 
Generator

Fig. 1. Overall architecture of the registration network. From left to right: the CC
and MLO views are passed through the shared convolutional layers; the feature map
is concatenated and passed as input to the localization network; the CC image is
registered by applying the estimated affine transformation parameters.

2.2 Spatial Transformer Networks

A Spatial Transformer network is a lightweight block which predicts and applies
a spatial transformation to an input feature map during a single forward pass.
It was proposed as a way to enhance an image classification network by allowing
the network to transform feature maps to a canonical, expected pose to simplify
inference in the subsequent layers [9]. The spatial transformer is composed of a
localization network, which predicts the parameters of an affine transformation,
which only requires six output parameters. Then, a sampling grid is created,
that is a set of points where the input map should be sampled to produce the
transformed output. Finally, the input feature map is resampled and interpo-
lated to produce the output image (see Fig. 1). Spatial Transformers include a
differentiable implementation of the sampling grid and resampling layer, allow-
ing for end-to-end training, with standard back-propagation, of the models they
are injected in. The network learns how to actively transform the feature maps
to help minimise the overall cost function of the network during training.

3 Methodology

The proposed registration network is an end-to-end architecture which accepts
as input a pair of unregistered CC and MLO images, and outputs the resampled
CC image. We chose the MLO as fixed image and the CC as moving image since
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the former includes also the pectoral muscle, which is outside of the CC field of
view. Registering the MLO to the CC would push the pectoral muscle out of the
image pixels grid, and it would be impossible to estimate the correct deformation
for the pixel belonging to the pectoral muscle.

The overall architecture, depicted in Fig. 1, is divided in two parts: the fea-
ture extraction block, and the Spatial Transformer block. The feature maps are
extracted for each view separately, before being concatenated and passed to the
Spatial Transformer network (introduced in Sect. 2.2). The proposed architec-
ture implements an affine transformation, but can be easily extended to support
other types of deformations by substituting the localization network. The archi-
tecture is trained in an end-to-end fashion exploiting the ground truth lesion
bounding boxes as additional supervision. This provides cues for higher quality
registration compared to the plain MSE.

The feature extraction backbone, marked as CNN in Fig. 1, is based on a
ResNet50 network [6]. Specifically, we include up to the Conv4 x blocks. Weights
are shared between views to reduce the number of parameters.

The Spatial Transformer is formed by a localization network and a resam-
pling module. The localization network is made of a residual block (correspond-
ing to the Conv5 x block of the ResNet50) followed by a dense layer to predict
the parameters of the affine transformation:

θ =

⎡
⎣

a1,1 a1,2 t1
a2,1 a2,2 t2
0 0 1

⎤
⎦ (1)

In the case of image registration, the sampling grid is simply the pixel grid
of the fixed image, which greatly simplifies the implementation of the grid gen-
erator [9]. The output warped CC image is obtained by applying the affine
transformation to this sampling grid using a bi-linear interpolation scheme.

The above resampling scheme can be applied indifferently to the original
images (as done here), as well as to the feature maps (which could be useful if
the feature maps were used for other tasks). Bounding boxes are converted by
applying the inverse affine transformation and then rectifying the results. All
layers including the bounding box registration are differentiable and, hence, can
be trained end-to-end.

3.1 Loss

We argue that the MSE cannot by itself achieve successful registration. One of
the underlying reasons is that the pectoral muscle is visible only in the MLO
view. Experimentally, we observe that the CC may be overstretched over the
pectoral muscle to achieve lower loss. If the registration is correct, the border of
the CC should align to that of the pectoral muscle (see Fig. 2(a)).

To counterbalance this fact, we include in the loss only the region in which
the moving CC image and the fixed MLO overlap (see Fig. 2(c)). The effect of
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the pectoral muscle, as well as of external air, is thus minimized. The resulting
loss is defined as:

LMSE(Xmlo,Xcc) =
∥∥(Xmlo − Xccreg )M

∥∥2
(2)

where Xmlo is the MLO image, Xccreg is the CC view after registration and M
is the binary overlap mask.

Fig. 2. Calculation of the overlap mask for the MSE loss. Unregistered (red box) and
registered (green box) CC views are shown in (a) and (b). The shaded blue area is
included in the calculation of the loss (b). In (c) the registered CC, fixed MLO and
overlap mask are shown superimposed. It can be noticed how the margin of the CC
view aligns with the pectoral muscle, outside of the overlap area. (Color figure online)

In order to exploit the lesion bounding boxes, we need a loss which reflects to
which extent corresponding views are matched by the registration. The Intersec-
tion over Union (IoU) is a widely used measure to compare bounding boxes, but
when the two bounding boxes do not overlap, the IoU is undefined. The recently
proposed GIoU overcomes this limitation [16]. Given a pair of bounding boxes,
it is defined as:

GIoU(Bmlo
i , B

ccreg
i ) = IoU(Bmlo

i , B
ccreg
i ) − Ac − U

Ac
(3)

where Bmlo
i and B

ccreg
i are the two bounding boxes, Ac is the area of the

smallest enclosing box that includes both and U is their union. In short, when
the bounding boxes don’t overlap significantly, the GIoU takes their relative
distance into account.

The GIoU loss (LGIoU = 1 − GIoU) was initially proposed as a regression
loss to train object detection networks. To the best of our knowledge, this is the
first time it is used for the purpose of registration. To conclude, for each pair of
mammographic views the total loss is calculated as

Ltotal = LMSE + λLGIoU (4)

where λ is a rescaling parameter.
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4 Experimental Setup

Dataset. Our experiments were performed on the curated CBIS-DDSM col-
lection [7,10]. Each study comprises up to 4 images including both CC and
MLO orientation. We selected cases with benign and malignant lesions visible
on both views. Based on the standard training/test split, we obtained 985 cases
for the development set and 122 for the test set. The training set was further
split into a training (75%) and validation (25%) set. Images were downsampled
so that the largest dimension was equal to 600 pixels. We did not exploit meta-
data available in the DICOM images; although in digital mammography patient
positioning and other useful information would be available in the image head-
ers, the DDSM collection comprises only scannerized screen-film mammography.
Images were converted to grayscale by replicating the intensity values across
the RGB channels and normalized by subtracting the ImageNet mean. No other
pixel normalization was applied.

Pretraining. The ResNet50 backbone is pretrained on the ImageNet dataset
and finetuned for the task of object detection on the same CBIS-DDSM dataset.
Specifically, it is pretrained using the Faster R-CNN for 80 epochs before trans-
ferring to the registration [17]. This allows faster convergence than transferring
directly from ImageNet (results not reported due to space limitations). This
observation opens interesting prospects for feature sharing across multiple tasks,
which however are outside of the scope of these experiments.

Hyperparameter Setup. Hyperparameters were experimentally finetuned on
a smaller dataset. For the final training, we used the Adam optimizer (learning
rate 10−4, batch size 1). The network was trained for 300 epochs, each comprising
500 batches. The λ parameter (see Eq. 4) is set to 1000. The output dense layer of
the Spatial Transformer is randomly initialized using Glorot initialization. The
affine transformation parameters bias parameters are initialized to a 45 degree
counterclockwise rotation, which is based on prior knowledge of the acquisition
process. The network was implemented in Keras 2.2 with Tensorflow 1.13.1. All
experiments were conducted on an AWS px2.large GPU instance.

Evaluation. Evaluation is not straightforward given the absence of a ground
truth. Since the GIoU takes into account both the intersection and the distance
of each pair of bounding boxes, we consider it as a viable evaluation metric. In
addition, we visually inspected the registration results for the test set.

5 Results

The network was trained for 300 epochs without showing signs of overfitting
(see Fig. 3). Both MSE and GIoU decreased indicating a synergistic behaviour
of the two losses. When two bounding boxes do not overlap (IoU = 0), the
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GIoU loss simplifies to LGIoU = 2 − U
Ac

≥ 1 [16]. In order to minimize U
Ac

, the
distance between the two bounding boxes must be reduced to the point where
they eventually overlap.

(a) (b)

Fig. 3. Evolution of the loss during training: MSE (a) and GIoU (b)

The distribution of the LGIoU on the test set is shown in Fig. 4. The bounding
boxes for the registered CC and MLO overlap in 66.7% of the cases, which is
an encouraging result. When LGIoU approaches 0, the bounding boxes tend to
perfectly overlap. In practice, due to the rectification process, the bounding boxes
are unlikely to achieve perfect overlap, and lower IoU values are to be expected.
Visually, in the large majority of cases the registration was successful in aligning
the two views in terms of shape and global features, although an evaluation by
a trained radiologist would be needed for confirmation.

Fig. 4. Histogram of the GIoU loss for the test set

Examples of successful and unsuccessful registration results are shown in
Fig. 5. In roughly 10% of the cases, the CC is still slightly overstretched to cover
the pectoral muscle (Fig. 5a). It can be shown that in two cases, even if global
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alignment is successful, the bounding boxes do not overlap, sometimes by a large
amount (Fig. 5c): this indicates that certain deformations cannot be recovered
with the proposed affine transformation.

(a)
overlap.png

(b)
overlap.png

(c)

(d) (e)

Fig. 5. Registration examples: the MLO and registered CC views are shown overlapped.
The MLO bounding box is shown in red, the CC in blue, before and after rectification.
(Color figure online)

6 Conclusion and Future Works

The presented work tackles the challenge of registering CC and MLO views by
designing a fully trainable registration network. Weakly supervision that exploits
available lesion annotations achieves promising results both in terms of visual
alignment and lesion registration. The proposed technique has been demon-
strated using an affine transformation. As a consequence, the network cannot
fully capture the complex deformations occurring due to breast compression.
Further improvements can be expected by substituting the Spatial Transformer
with a different module to estimate a pixel-wise deformation field. This work
lays the basis for several future developments. We will investigate how to com-
bine the proposed network with other architectures, e.g., for object detection,
to achieve multi-view analysis of mammographic images. The proposed tech-
nique could also be adapted to related tasks, such as the temporal registration
of images from subsequent screening rounds.
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Abstract. Microscopic examination of tissues or histopathology is one of the
diagnostic procedures for detecting colorectal cancer. The pathologist involved
in such an examination usually identifies tissue type based on texture analysis,
especially focusing on tumour-stroma ratio. In this work, we automate the task of
tissue classification within colorectal cancer histology samples using deep trans-
fer learning. We use discriminative fine-tuning with one-cycle-policy and apply
structure-preserving colour normalization to boost our results. We also provide
visual explanations of the deep neural network’s decision on texture classifica-
tion. With achieving state-of-the-art test accuracy of 96.2% we also embark on
using a deployment friendly architecture called SqueezeNet for memory-limited
hardware.

Keywords: Histology · Colorectal cancer · Transfer learning · Texture
classification

1 Introduction

According to the statistics provided by the American Cancer Society, colorectal cancer
(CRC) is the third and second most commonly occurring cancer in men and women,
respectively [3]. Histopathology provides one of the diagnosis procedures wherein, sus-
picious tissue is sampled by biopsy and examined under a microscope. A typical pathol-
ogy report consists of tissue cell structural information which is used by the pathologist
to decide upon any presence of malignant tumours. Such histological samples may typ-
ically contain more than two tissue types. Automating texture classification in CRC
histology images will aid pathologists in making informed clinical decisions. Figure 1
represents randomly sampled histological images of eight different tissue types in CRC.
Histology image analysis for cancer diagnosis can be extremely challenging because
of issues with slide preparation, variations in staining and inherent biological structure
[14]. This makes the need for domain-specific input very important for feature genera-
tion. Deep learning being domain agnostic can make use of rich information present in
histology images.
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2 Related Work

Studies relating to different texture analysis in human CRC have been lacking, although
[14] has introduced a dataset containing 8 different classes of textures in CRC. They
used traditional machine learning with hand-engineered texture descriptor features like
histogram, local binary patterns, gray level co-occurrence matrix, gabor filters and per-
ception like features with a reported accuracy of 87.4%. Work involving the use of deep
neural networks on this dataset is very limited. Authors in [4] have designed a fully
convolutional neural network (CNN) of 11 layers which could only classify with 75.5%
accuracy. In another work [30], stain decomposition has boosted the performance on
this dataset. They have derived hematoxylin and eosin (H&E) image components using
an orthonormal transformation of the original RGB images and fed it into a bilinear
convolutional neural network giving an accuracy of 92.6%. More recent works have
explored the use of transfer learning. [28] has made use of a weakly labelled dataset and
transferred features to retrain the model to reach an accuracy level of 92.70%. Another
work experimented with different transfer learning approaches, generating features from
pre-trained models without fine-tuning to train a classifier and fine-tuning pre-trained
models, with the former method achieving the best accuracy of 95.40% [22].

Recent advancements in deep learning has led to the development of intelligent
microscope-based slide scanners which have embedded software solutions for a specific
task, like cell counting, tumour segmentation etc. [2]. Moreover, telepathology is the
future of digital pathology where tissue images can be acquired and transmitted to
pathology experts to facilitate rapid diagnostics using a smartphone. These technologies
have limited computing resources and require specialized software and highly accurate
small-sized CNN architecture [7, 31]. Much of the work does not explain in detail the
fine-tuningmethod in transfer learning and has only focused on achieving good accuracy
but not resource efficiency. In the rest of the paper, we demonstrate and achieve state-of-
the-art results onCRCdataset [14] using transfer learningwith discriminative fine-tuning
and one cycle policy on a lightweight CNN architecture.

3 Methodology

3.1 Dataset and Preprocessing

The CRC dataset contains 5000 RGB histological images of 150-by-150 pixels each
belonging to one of the 8 tissue categories. Each category has 625 images ofH&E stained
tissue samples digitized with an Aperio ScanScope [14]. We follow two steps of image
preprocessing for this dataset. Firstly, the H&E staining process enables a clear view
of morphological changes within a tissue [6]. But this process is prone to undesirable
colour variations across tissue types because of differences in tissue preparation, staining
protocols, the colour response of scanners, and rawmaterials used in stainmanufacturing.

Any learning algorithm weighing-in more on the colour variation will lead to error
in classification [15].We use a structure-preserving colour normalization technique with
sparse stain separation on these images given by [29]. Keeping one target image, other
images are normalized by combining their respective stain density maps with a stain
colour basis of the target image thus preserving the morphology. Figure 2 illustrates
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Fig. 1. Randomly sampled 8 images from each class (row) - a) Tumour epithelium b) Simple
stroma c) Complex stroma d) Immune cell e) Debris f) Mucosal glands g) Adipose tissue h)
Background (no tissue) in row-wise order starting from the top.

the effect of colour normalization. Second, the colour normalized dataset is then scaled
between 0 and 1 followed by normalizing each channel to the ImageNet dataset [5].

3.2 Data Augmentation

With limited data, convolutional neural networks may overfit. Data augmentation
improves the generalization capability of these networks by transforming images such
that the network becomes robust to unseen data [20].

Random zoom crops were applied, as image patches in histopathology are invariant
to translation in the input space. Tissue diagnosis is rotation invariant, which means
that the pathologists can study histopathological images from different orientations. We
introduce vertical and horizontal flips, and rotations, restricted to 90, 180 and 270°
because of interpolation issues. The other augmentation techniques used were lighting,
warps, gaussian blur, and elastic deformation. We applied in-memory dynamic data
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Fig. 2. Effect of structure-preserving colour normalization: a) Raw images b) Colour normalized
images.

Fig. 3. Examples of image transformations for data augmentation using a) Rotations b) Random
zoom crops and c) Jitter.

augmentation that applies random transformations on a batch of images during training.
Figure 3 shows examples of a few transformations.
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3.3 Transfer Learning Using SqueezeNet

Advancements in Deep Learning have led to super-human level performance on the
ImageNet large scale visual recognition challenge. State-of-the-art deep neural networks
(DNN) trained on the ImageNet dataset possess generic feature computation capabilities
like gabor filters and colour blobs in their first layer that are very generic to any dataset or
task. On the other hand, the final layer of these architectures become task-specific [32].
Given a new target visual dataset with a limited number of training examples, features
from the pre-trained neural networks can be repurposed to adapt to this new dataset,
called transfer learning. Since the AlexNet [18] breakthrough in ImageNet classification,
many variants of convolutional neural networks have been submitted to the ImageNet
challenge achieving state-of-the-art results. There is a high correlation between top-
1 accuracy ImageNet architectures and their transfer learning capabilities [17], which
makes it obvious to pick an architecture that performs the best on ImageNet. The focus
of the majority of the models has not been on resource utilization, hence they are not
practically deployable on resource-limited hardware. There has been an emergence of
lightweight models like MobileNets, EfficientNets and ShuffleNet, but for this work, we
choose an architecture called SqueezeNet [12] which has fewer parameters among the
recent architectures and that performs reasonablywell on ImageNet.With only 1,267,400
parameters and a model size of 4.85 MB, SqueezeNet proves to be a very lightweight
model.

SqueezeNet is a convolutional neural network that is carefully designed such that it
has few parameters but with competitive accuracy on ImageNet. For this, they follow
strategies like replacing 3 × 3 filters with 1 × 1 filters, reducing the number of input
channels to 3 × 3 filters and maintaining large activation maps for the convolutional
layers by downsampling late in the network. These strategies are bundled into a module
called Fire module (Fig. 4) which consists of a set of 1 × 1 filters in the squeeze
convolutional layer, and a mix of 1 × 1 and 3 × 3 filters in the expand layer. The
network macro architecture and architectural dimensions are presented in Fig. 5 and
Table 1, respectively.

Pre-trained SqueezeNet was used as a backbone network and its penultimate layer
is used as a feature extractor. The final output layer is replaced with a series of fully
connected layers with Kaiming initialization [8], coupled with BatchNorm [13], and
Dropout [27] layers which we call the head (layer group 4, Table 1). The rectified linear
unit (ReLU) was used as the activation function.

Fig. 4. Fire module of SqueezeNet
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Fig. 5. SqueezeNet macro architecture
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3.4 Finding the Optimal Learning Rate for Super-Convergence

The ability of an architecture to converge towards global minima on the loss function
topology is an active area of research and is guided by hyperparameters like learning rate,
batch size, momentum, and weight decay. Optimizers like Adam, AdaGrad, AdaDelta,
and Nesterov momentum use a piecewise constant learning rate, starting with a global
learning rate while carefully reducing it on the test set reaching a plateau [23]. Such
strategies do not have a mechanism to automatically choose large learning rates that
may help the network converge faster. We unfreeze the weights of the head (layer group
4, Table 1) andmake them learnable while freezing the rest of the layers and fine-tune for

Table 1. SqueezeNet architectural dimensions

Learning
rate

Layer
group

Layer #1 × 1 #1 × 1 #3 × 3 Filter
size/Stride

Output
shape

Input image 224 ×
224× 3

0.0001 1 Conv1 7 × 7/2 96 ×
109 ×
109

Maxpool1 3 × 3/2 96 ×
54× 54

Fire1 16 64 64 64 ×
54× 54

Fire2 16 64 64 64 ×
54× 54

0.003 2 Fire3 32 128 128 128 ×
54× 54

Maxpool2 3 × 3/2 256 ×
27× 27

Fire4 32 128 128 128 ×
27× 27

0.006 3 Fire5 48 192 192 192 ×
27× 27

Fire6 48 192 192 192 ×
27× 27

Fire7 64 256 256 256 ×
27× 27

Maxpool3 3 × 3/2 512 ×
13× 13

Fire8 64 256 256 256 ×
13× 13

(continued)
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Table 1. (continued)

Learning
rate

Layer
group

Layer #1 × 1 #1 × 1 #3 × 3 Filter
size/Stride

Output
shape

0.01 4 Adaptiveavgpool2d 512 ×
1 × 1

Adaptivemaxpool2d 512 ×
1 × 1

Flatten 1024

BatchNorm1d 1024

Dropout 1024

Linear 512

Batchnorm1d 512

Dropout 512

Softmax 8

two epochs. Next, we unfreeze the entire network and test its ability to super-converge
[24].

We run a learning rate (LR) range test [25], a mock training on the network on a large
range of learning rates for 100 batches and generate a loss vs learning curve as given
in Fig. 6. This gives us an idea of the maximum learning rate up to which the model
converges, beyond that the test or validation loss starts increasing leading to overfitting
and poor accuracy. Learning rates between 0.0001 and 0.01 prove to reduce the loss,
whereas beyond 0.01 the network starts to unlearn.

3.5 Discriminative Fine-Tuning with One-Cycle-Policy

Instead of using a global learning rate andmonotonically decreasing it,we implement one
cycle policy (cyclical learning rate) [26] with decoupled weight decay (AdamW: beta1
= 0.9, beta2 = 0.99) [19] that lets the learning rate cyclically vary between reasonable
boundary values. This leads the network to converge faster and attain improved accuracy.
Setting the learning rate to slightly below the maximum learning rate as the maximum
bound, and to 10 times less this value as the lower bound, we train the network by starting
at the lower bound and linearly increasing the learning rate up to maximum bound. At
the same time momentum is decreased from 0.95 to 0.85 linearly. Then we perform
cosine-annealing on the learning rate down to zero, while applying symmetric cosine
annealing on momentum from 0.85 to 0.95 as shown in Fig. 7 [9].

Pretrained architectures exhibit different levels of information in their layers, start-
ing from initial layers learning generic features to the final layer learning task-specific
high-level features. Hence, different layers require different learning rates when being
fine-tuned for a new task [11]. As shown in Table 1, the network is divided into 4
layer groups. The maximum bound learning rate discovered using the LR range test is
assigned to the final (4th) layer group and the preceding layers are assigned with evenly
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Fig. 6. Learning rate range test – training the entire network over a range of learning rates. The
red markers define boundary values for a learning rate range where the network is still learning.
(Color figure online)

spaced decreasing learning rates up to the boundary value marked in red. Each layer
then undergoes one cycle policy with new maximum and minimum bounds.

Fig. 7. Progression of a) learning rate and b) momentum during the one cycle training policy.

4 Visual Explanation Using Gradient-Based Localization

Making deep learning models transparent and explainable helps in understanding the
failure modes as well as establishing trust and confidence by its users. However, decom-
posing deep neural networks into intuitive and interpretable components is difficult. A
technique known as Class Activation Map (CAM) is very popular for interpreting the
decisions made by deep learning models [33] but is limited to architectures with feature
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maps directly preceding the softmax layers. Hence, we provide visual explanations of
texture detection by the networks using a generalization of CAM known as Grad-CAM
[21]. Similar to CAM,Grad-CAMgenerates a weighted combination of featuremaps but
followed by a ReLU. Grad-CAM extracts gradients from a CNN’s final convolutional
layer and uses this information to highlight regions most responsible for the prediction.

Figure 8 shows raw images of the tissues and heatmaps generated using Grad-CAM
superimposed on them. The generated heat map is a two-dimensional fractional grid
associated with a particular output category. For example, for each input image, a heat
map of tumor epithelium can be generated by Grad-CAM visualization, indicating how
every part of the image is similar to tumor epithelium’s features. Heat maps of simple
stroma can also be generated, indicating how similar every part of the image is to sim-
ple stroma’s features. The morphological differences between tissue types are clearly
visible in the generated heatmaps and these areas depict regions of interest identified
by pathologists [16]. Such visualizations are an important addition in medical diagnosis
since they reflect which parts of the tissue is affecting the model’s predictions most. This
information can guide the pathologist to understand why the classifier is suggesting a
particular class and confirm the suspected diagnosis.

Fig. 8. Raw image vs Predicted heatmap. a) Tumour epithelium b) Simple stroma c) Complex
stroma d) Immune cell e) Debris f) Mucosal glands g) Adipose tissue h) Background (no tissue).
The brighter parts in the heatmap correspond to the network’s attention leading to a correct
prediction.

5 Results

The dataset is randomly shuffled and stratified, and divided into 3 sets: training (60%),
validation (20%) and test (20%). We conducted different experiments related to the use
of the pre-trained SqueezeNet network, and the use of the optimizer with one cycle
policy. In Table 2 we compare the results of SqueezeNet architecture trained with and
without the pre-trained weights. Also, the difference in the results is analyzed when a
traditional piecewise constant learning rate scheduler optimizer like Adam is used.

It is realized that while training the network with Adam [23] and pre-trained weights
set to true, the network achieves below par accuracy. One cycle policy and AdamW
without using the pre-trained weights performs better than Adam, and with weights,
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Table 2. Comparison of one cycle policy with Adam optimizer

Squeezenet pretrained
weights

Optimizer Validation accuracy
(%)

Test accuracy (%)

True One cycle policy with
AdamW

97.4 96.2

False One cycle policy with
AdamW

80.1 75.6

True Adam 71.5 64.8

we achieve the state of the art results of accuracies 97.4% and 96.2% on the validation
and test set respectively. These experiments were carried out using the fast.ai [10] and
Tensorflow [1] frameworks. We computed the receiver operating characteristic (ROC)
curves (Fig. 9) for each of the classes based on different threshold settings and generated
the area under the curve (AUC) plots. The ROC curve is a plot of the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings. An AUC
of 1 is a perfect scenario of the model predicting every class correctly in the test set.
With the SqueezeNet architecture, by computing average ROC the overall sensitivity
and specificity is approximately 99%.

Fig. 9. ROC curves for the test set using SqueezeNet’s fine-tuned architecture.

Figure 10(a) and (b) shows the training progress for 14 epochs of training, specifically
the training and validation loss, as well as the accuracy, for training with a batch size
of 32 and one threshold setting. The network saturated at an accuracy of 97.4% on the
validation set, yielding 96.2% on the test set. The final model is serialized and made
ready for deployment. We tested the model’s performance in terms of inference time
vs batch size (Fig. 10c) on a 640 cores Quadro M2000M GPU which is a mid-range
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Fig. 10. a) Train and validation loss, b) error rate, and c) batch inference time vs batch size

graphics card, keeping in mind that the technologies where our models could be used
would have limited computing resources.

6 Conclusion

In this paper, we achieve state-of-the-art results in texture classification in human col-
orectal cancer using transfer learning with super-convergence. The work also takes into
consideration a deployment friendly DLmodel and network visualization tomake neural
networks decision making more transparent and explainable. SqueezeNet, a model of
very small size (4.8 MB) is used to demonstrate the results. Various data augmentation
techniques and structure preserving colour normalization were also used to boost the
results. For future work, we aim to investigate tumour progression from the learned
network using a similar dataset.
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Abstract. While standard dermatological images are relatively easy to
take, the availability and public release of such data sets for machine learn-
ing is notoriously limited due to medical data legal constraints, avail-
ability of field experts for annotation, numerous and sometimes rare dis-
eases, large variance of skin pigmentation or the presence of identifying
factors such as fingerprints or tattoos. With these generic issues in mind,
we explore the application of Generative Adversarial Networks (GANs) to
three different types of images showing full hands, skin lesions, and vary-
ing degrees of eczema. A first model generates realistic images of all three
types with a focus on the technical application of data augmentation. A
perceptual study conducted with laypeople confirms that generated skin
images cannot be distinguished from real data. Next, we propose models
to add eczema lesions to healthy skin, respectively to remove eczema from
patient skin using segmentation masks in a supervised learning setting.
Such models allow to leverage existing unrelated skin pictures and enable
non-technical applications, e.g. in aesthetic dermatology. Finally, we com-
bine both models for eczema addition and removal in an entirely unsu-
pervised process based on CycleGAN without relying on ground truth
annotations anymore. The source code of our experiments is available on
https://github.com/furgerf/GAN-for-dermatologic-imaging.

Keywords: Generative Adversarial Networks · Dermatology

1 Introduction

Generative Adversarial Networks (GANs), initially proposed in [8] have since
then produced impressive results in a variety of synthetic data generation tasks.
In contrast to other deep learning methods, which are notoriously data-intensive,
GANs achieve good results even with relatively small data sets [2,7]. This makes
GANs attractive for domains where training data is difficult or expensive to
obtain. A standard example is the medical field, where specialized machinery
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may be needed or occurrences of pathologies may be hard to find. Using data
sets augmented with GAN-generated synthetic data to train machine learning
models has improved performance in a variety of medical domains [3,9,12].

Dermatology is one domain particularly suited for the application of deep
learning models, but with far too few publicly-available data sets compared to
the diversity of the cases encountered in clinical practice. Therefore, the idea
to leverage the GAN framework to generate new samples is very promising.
However, applications in dermatology are to this date still rare. One example
is MelanoGAN [2], which generates images of skin lesions from ISIC 2017 [5].
The authors compare the results of different GAN models by training a lesion
classifier on synthetic data only. In another work, [3] generate skin lesions from
ISIC 2018 by translating lesion segmentation masks to images. The resulting
images are thus directly associated with ground truth segmentations, which can
be leveraged for further applications.

In this paper we present our results for two different types of skin lesions:
eczema and moles. For eczema we use a private data set (due to identifying
patient information) but for moles we use an established public data set for
reproducibility and as an example of the generality of our approach.

Besides technical applications such as data augmentation or the creation of
paired data, image transformation also enables domain-specific use cases such as
prediction of a skin lesion evolution or the evaluation of aesthetic effects of treat-
ment. With this in mind, we train our GAN models to add or remove eczema
from skin pictures pursuing two different strategies: a supervised approach where
we use ground truth lesion segmentation masks to target modifications to pre-
cisely defined areas as well as an unsupervised process entirely freed from the
availability of training data.

2 Materials and Methods

2.1 Data Sets

We conduct experiments on 3 different types of dermatologic images:

Sets of Hands. The first set of experiments is conducted on photos of hands.
Each of the 246 individual pairs of hands was photographed from the front and
the back side, for a total of 492 photos. They were taken under uniform condition
with green background and downscaled to 640 × 480 pixels.

Patches of Skin. Most of the remaining experiments leverage high-resolution
photos (3456 × 2304 pixels) of the back side of hands from the EUSZ2 data set
collected in the SkinApp project [17]. There are 79 photos available for training
and we use a test set of 52 photos to analyze the overfitting of the discriminator.
The photos are annotated with segmentations marking the contour of the hands
and eczema lesions. From these photos, we extract patches of skin fulfilling the
following criteria: a patch consists of skin only (no background) with a specified
amount of skin being afflicted with eczema. We create a data set with healthy
skin patches and a data set with skin with eczema patches, where 10–80% of the
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skin pixels are annotated as eczema. For these experiments, patches of 128×128
pixels are used. This procedure yields 51023 patches of healthy skin and 2872
patches of skin with eczema. Larger patch sizes yield smaller data sets and
significantly increase overfitting, especially in the case of skin with eczema.

Skin Lesions. The final data sets consist of dermoscopic images of skin lesions
from the ISIC archive 2018 [5,22]. In particular, we generate new lesion images
of Dermatofibroma (DF) and Melanoma (MEL) with 115 and 1113 samples
available for training, respectively. These different data set sizes allow to analyze
the effects on GAN performance. The original images have varying sizes and are
resized to a common resolution of 256 × 256 pixels.

2.2 Model Architecture

This section describes the architecture of the generator and discriminator models
for the experiments. Our models are based on the architecture of DCGAN [19]
with the changes described in the following paragraphs. All models are optimized
using Adam [16] with a learning rate of 5 · 10−5 and default moment decays
β1 = 0.9, β2 = 0.999 (values determined experimentally for model convergence).
The training was organized in batches of varying size depending on the image
resolution and was stopped when the training metrics converged.

Unconditional Generator. The generator for unconditional image synthesis
receives a 100-dimensional input vector (drawn independently from a standard
Gaussian), which is first passed through a dense layer to produce 64 initial feature
maps. The layer’s output is reshaped based on the desired aspect ratio of the
generated images with lower resolution. Then, a sequence of fractionally-strided
convolutions (deconvolutions) increases the image size until the desired output
resolution is achieved.

Following common practice, the number of feature maps per convolution are
halved at each resolution stage. After each convolution, the output is passed
through batch normalization [13] and activated with LeakyReLU [18]. Finally, a
regular convolution with 3 output feature maps is activated with tanh to produce
the RGB-channels of the generated image.

The hand images generator benefits from unstrided convolutions after each
deconvolution to refine the intermediate representations. This is attributed to
the comparatively large complexity of these images and does not help with the
generation of patches of skin and skin lesions. The size of the initial dense layer
and the number of deconvolutions determine the image resolution. Table 1 sum-
marizes the model parametrizations.

Table 1. Unconditional generator: image resolution overview.

Experiment Dense layers Deconvolution Resolution

Full hands (Sect. 3.1) 20× 15× 64 5 640× 480

Skin patches (Sect. 3.1) 8× 8× 64 4 128× 128

Skin lesions (Sect. 3.1) 8× 8× 64 5 256× 256
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Image Translation Generator. The image translation model is based on the
U-Net architecture [20]: an encoder with increasing number of features, which
reduces the image resolution, and a decoder to reverse the process. Additionally,
the encoded representation is translated with a sequence of residual blocks [10].
We find experimentally (with the FID score and a qualitative review of the
results) that 2 strided convolutions in the encoder and 2 deconvolutions in the
decoder yield the best results. Consequently, the residual blocks translate fea-
tures with a resolution of 32 × 32 pixels. We find that 4 residual blocks are
ideal, which is surprisingly low but can be attributed to the fact that the skin
images are small and relatively simple. Skip connections between the encoder
and the corresponding decoder stages are used as suggested by [14]. These con-
nections forward intermediate features from the encoder that are combined with
the decoder features by concatenation.

Finally, we task the image translation generator with image modification. To
that end, the input image is added to the 3 output channels of the generator,
so that it is essentially tasked with generating an image residual. The generated
residual contains the information to modify the input photo in the desired way.

Discriminator. All experiments leverage the same multi-scale discriminator
architecture [23]: two individual discriminators process an input image and
a downscaled version of the image. Afterwards, their outputs are averaged.
This improves the sensibility to low-level details and high-level structures. We
observed that more than two discriminators do not improve results, which can
be explained by our images’ lower resolution when compared with [23].

Both discriminators have the same architecture: a sequence of strided con-
volutions with batch normalization and LeakyReLU activation, followed by a
dense layer with one output neuron to produce the prediction. The features are
doubled after each convolution and the number of convolution layers matches the
deconvolution layers of the corresponding generators, as summarized in Table 1.
All the image translation experiments operate on patches of skin image with
4-convolution discriminators. As the generators produce normalized images, the
channels of the real images are also normalized before discrimination.

Model Balance and Selection. The balance between the generator and dis-
criminator is difficult to maintain, as neither should overpower the other [25].
Model balance is adjusted by selecting the number of initial features of the gen-
erator and discriminator. Table 2 summarizes the initial features of all models in
this work’s experiments. The ideal numbers of features are determined empiri-
cally with the restriction of the available GPU memory.

Besides visual inspection, we minimize the Fréchet Inception Distance (FID)
[11] to select the best model. The FID measures the dissimilarity between real
and generated images, it is commonly used to quantitatively compare the results
of GAN models. In our experiments, this metric works well with unconditional
generation, but not with image translations showing that the generator’s sec-
ondary objective of retaining certain image regions penalizes image realism.
Furthermore, we observe that FID scores computed on different data sets should
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not be compared as the data set’s inherent statistics and variability greatly
influence the FID scores.

Model selection is additionally guided by the discriminator’s predictions con-
fidence and consistency, which indicate whether the discriminator requires addi-
tional capacity to adequately distinguish real and generated samples, and thus,
to better guide generator learning.

3 Experiments

3.1 Unconditional Dermatology Data Synthesis

The first experiments concern the unconditional generation of dermatology data.
The objective is to explore the quality of generated images for different target
data sets. The findings indicate the expected performance when the GAN task
is not restricted and serves as a baseline for later comparisons with the results
of restricted tasks.

Table 2. Initial features for the generator and discriminator models.

Experiment Generator Discriminator

Full hands (Sect. 3.1) 512 32

Healthy patches (Sect. 3.1) 1024 128

Eczema patches (Sect. 3.1) 1024 256

Skin lesions (Sect. 3.1) 512 64

Targeted eczema (Sect. 3.2) 1024 256

Untargeted eczema (Sect. 3.3) 1024 256

Sets of Hands. There are two central aspects to the quality of the generated
images: high-level structures like anatomy and low-level details like textures.
Here, the multi-scale discriminator architecture proves useful, as the two dis-
criminators each focus on one of these aspects. However, many of the generated
images still contain visible defects such as hands with more than 5 fingers. These
issues are linked to unlikely generator input vectors and can be mitigated using
the truncation trick [23] to improve the quality of the generated images.

The truncation technique includes the truncation of the input below some
a priori defined threshold. Every exceeding component of the input vector is
re-sampled. Truncation trades sample variability for quality: aggressive trunca-
tion significantly reduces variability, while sample quality increases. We deter-
mine empirically that a threshold of 0.1 is suitable for the generation of hands,
based on the generated samples and FID scores. These scores are summarized
in Table 3. Figure 1 shows the results with a truncation threshold of 0.1.

While the samples do not show great variability, their quality is generally
high. The hands’ textures look realistic, the side (front or back) of most pairs of
hands can be determined in most samples and most hands consist of four fingers
and a thumb.
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Table 3. Truncation threshold selection with FID score.

Threshold 0.01 0.02 0.05 0.1 0.2 0.5 1 None

FID 111.4 94.5 75.0 69.5 69.5 70.3 74.1 74.2

Fig. 1. Samples of the unconditional generation of hands.

This application shows that high-resolution dermatology images can be gen-
erated with a relatively small data set. These images could be mistaken for real
photos at short glance. The model obtains a FID score of 74.2 without trun-
cation, a significantly lower value than in all other experiments. This indicates
that FID scores on different data sets should not be compared.

Patches of Skin. We further experiment with the unconditional generation of
images of healthy skin and of skin that contains eczema. These experiments are
a prerequisite for later eczema modification experiments.

Healthy Skin. With the large data set of 51023 patches of skin that do not
contain any eczema, our GAN is able to generate high-quality images. Samples
are shown in Fig. 2. The generated samples look very realistic and are also very
diverse. Different types of skin, as well as creases and wrinkles are generated.
The selected model achieves a FID score of 538.7.

Fig. 2. Samples of the unconditional generation of healthy skin (first line) and skin
with eczema (second line).

Skin with Eczema. We observe that the discriminator’s task becomes more
difficult when classifying patches of skin with eczema, so that the best results
are achieved when the discriminator contains more feature maps. Sample results
are shown in Fig. 2. The quality of the generated images is comparable with
the synthetic healthy skin. The skin is detailed and contains different kinds of
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wrinkles and eczema. Overall, there are more creases than in the patches of
healthy skin, which is attributed to the increased prevalence of eczema in such
areas of the hand. The model achieves a FID score of 599.6 for this task.

Perceptual Study. We further evaluate the generated images quantitatively in
a perceptual study. The results are presented in Sect. 3.1 along with the analysis
of synthetic skin lesion images.

Overfitting. Finally, we analyze the models’ overfitting, quantitatively for
the discriminator and qualitatively for the generator. For patches of skin with
eczema, the discriminator increasingly overfits over the course of the training.
Samples from the training set are predicted as real with high likelihood, while
testing samples are increasingly being rejected as generated. We observe that this
is not the case for the discriminator of healthy skin. As the discriminator for skin
with eczema has greater capacity, it is more prone to overfitting. However, we
find that overfitting is mainly linked to the data set size. Low-capacity discrim-
inators also overfit to the set of 2872 images, while high-capacity discriminator
do not overfit on larger data sets.

We further investigate how the overfitting of the discriminator for patches of
skin with eczema impacts the generator. We perform a qualitative assessment of
the generator overfitting with the common method of comparing generated sam-
ples with their nearest training samples [4,6,15]. In our experiments, the struc-
tural similarity index [24] yields more similar samples than the mean squared
error. We find that the generated samples do not contain memorized parts of
the training set, so we can conclude that the discriminator’s overfitting is not
leading the generator to overfit as well.

Skin Lesions. Finally, we generate images of skin lesions. Samples of generated
DF and MEL lesions are shown in Fig. 3.

Fig. 3. Samples of the unconditional generation of DF (first line) and MEL (second
line) lesions.

Dermatofibroma. While these images resemble the samples of the training set,
they lack variability. Furthermore, they show clear tiling artifacts, i.e. patterns
that are repeated within a generated image. In this case, the discriminator is
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trained with only 115 real samples and overfits severely. This visibly impacts
the generator: we observe structures, such as lesion shapes or the hairs in the
bottom left corners across different samples. With these negative aspects, the
generator achieves a FID score of 822.9.

Melanoma. The generated images of MEL lesions contain far greater variability
but also suffer from significant tiling. In this case, the generator’s FID is 607.8.
There is significantly less overfitting, as this data set contains 1113 samples.
However, some of the hairs are still repeated. We hypothesize that such specific
and distinctive hairs are prone to be copied, as they are rare among the real
samples.

Fig. 4. Perceptual study: the box plots show the three quartiles of the obtained F1-
scores for each data set.

Perceptual Study. We assess the realism of the generated patches of skin lesions
with a perceptual study, where we ask 104 participants (laymen without prior
training) to determine whether a given image is real or generated. The partici-
pants are asked to discriminate 20 images from one of four sets: patches of healthy
skin, patches of skin with eczema,DF lesions, andMEL lesions. They have 2–3 sec-
onds observation time per image and do not receive intermediate feedback. Such
experiments are often conducted to assess if the generated images are easily identi-
fied [14,21,23]. The classifications are evaluatedwith theF1-score and the distribu-
tion of the results are visualized per data set in Fig. 4. The majority of participants
are unable to distinguish real and generated patches of skin, regardless of the pres-
ence of eczema: the mean F1-scores are just above random guessing, with 0.58 and
0.53. The third quartiles are also very low, with 0.63 and 0.59. This result confirms
that the models are able to generate realistic skin patches. On the other hand, skin
lesions are simpler to distinguish, with a mean F1-scores of 0.65 and 0.71. This
reflects the observations of the qualitative analysis, where generated lesions look
less realistic than synthetic patches of skin. Interestingly, DF lesions are perceived
as slightly more realistic than MEL lesions.
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3.2 Targeted Eczema Modification

We formulate eczema addition and removal as an image translation task: the
generator receives a skin photo and an eczema segmentation mask as input and
should either remove or add eczema within the indicated areas. This is performed
by generating a residual, which is added to the input image. To encourage pairing
between the generator’s input and output, its adversarial objective is combined
with the relevancy loss [1].

The translations are performed between the data sets of skin with and with-
out eczema, two data sets with very different sample sizes. Thus, the set of
patches of healthy skin is truncated to 2872 samples, to match the smaller data
set. We use additional healthy skin images to train the discriminator for eczema
removal, which effectively prevents overfitting. Furthermore, we use the same
segmentation with multiple photos of healthy skin. This also helps with gener-
alization, though the effects of this technique are less pronounced.

Eczema Removal. In Fig. 5 we show the translation results of removing eczema
from afflicted skin. Columns 3 and 6 still show the same parts of hands as the
input photos in columns 1 and 4, but they no longer contain the structures
and skin disruptions associated with eczema. However, the generated patches
generally lose some fine details such as creases, which are often less visible,
compared to the inputs. We observe that the FID score applies poorly to the
results of image translation. For these experiments, the FID is often oscillating, in
this case between 600 and 1100. Thus, we rely on the visual qualitative evaluation
of the generated samples.

Fig. 5. Eczema removal (first line) and addition (second line) from afflicted skin:
columns 1 and 4 show the input photos, columns 2 and 5 the input segmentations
and columns 3 and 6 the generation results.

Eczema Addition. We modify photos of healthy skin by adding eczema to
specified areas. Figure 5 shows sample results of this translation. The generator
again produces realistic images, as we show in columns 3 and 6. Generally, the
structures of the skin are retained and fewer details are lost, compared to eczema
removal. Further, realistic-looking eczema is placed in the desired parts of the
images. These results show that convincing eczema can be in-painted accurately
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in the indicated locations, which enables applications such as simulating the
progression of untreated eczema.

3.3 Untargeted Eczema Modification

We experiment the cyclic translation between patches of skin with and without
eczema. No segmentation masks are used and the translations are learned with
the completely unsupervised CycleGAN framework [26]. The pairing between
generator input and output is achieved with the cycle consistency loss [26],
which penalizes differences between a generator’s input and its reconstruction.
While placing a greater emphasis on cycle consistency does increase the pair-
ing, this benefit comes at the cost of reduced sample quality. Sample results of
unsupervised eczema modification are shown in Fig. 6.

Fig. 6. Unsupervised cyclic eczema transformation: columns 1 and 4 show the sick and
healthy input photos, columns 2 and 5 the generated translations without and with
eczema and columns 3 and 6 the input reconstructions.

The results are realistic and the original inputs are reasonably reconstructed
although some details are missing. This is to be expected, as the generated
patches of healthy skin in column 2 should not contain any hints on where or how
to in-paint specific eczema. Eczema addition produces realistic-looking lesions,
however, it is no longer targeted and can not always be clearly determined.

The loss of details observed in previous translation experiments is barely
noticeable here, likely a positive effect of the cycle consistency objective. The
metrics of these cyclic translation experiments are more stable than those of the
individual translations. For completeness, we mention that the synthetic patches
of healthy skin have a FID of 654.7 to the real data, while the synthetic patches
of skin with eczema have a FID of 690.2. These scores are reasonably similar to
the scores of unconditional generation, with 538.7 and 599.6, respectively.

4 Conclusion

We present different applications of GANs on dermatologic images. First, uncon-
ditional image generation is performed successfully with photos of hands and
patches of skin in particular. This is also shown for skin patches in the percep-
tual study. The validity of our approach is therefore confirmed and our initial
objective to create realistic synthetic data achieved.
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In the case of generated skin lesions, the results do not look as realistic. This
could be corrected by further filtering of the images with rare features (such
as hair in our particular case), when compared to the other images in the data
set. Our analysis shows that the discriminator already overfits with data sets of
several thousand images. On the other hand, we only notice overfitting in the
generator when using smaller data sets of merely hundreds of samples. Thus, we
conclude that the discriminator complexity should be especially controlled when
working with small data sets

In the second part of this work, we explore the task of image modification,
with eczema addition or removal within a specified area. The obtained results are
again visually appealing but we observe that the FID score may be unsuitable
to assess the quality of image translation experiments. In particular, we demon-
strate the precise addition of eczema to the areas indicated by the segmentation
mask. These results open the door for new applications in dermatology such as
anomaly detection in a disease appearance or the visualization of the long term
aesthetic effects of a disease.

Finally, we also perform domain translation between healthy skin and skin
with eczema lesions in an entirely unsupervised experiment. In particular, the
eczema removal results may be interesting for future applications, such as
weakly-supervised eczema segmentation similar to [1]. This is certainly the most
probable case that researchers will encounter as labeling is a costly step. In
practice, before labeling is even considered, it is often necessary to first get pro-
totyping results which could be achieved following this approach.
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Abstract. Multidrug resistant bacteria represent an increasing challenge for
medicine. In bacteria, most antibiotic resistances are transmitted by plasmids.
Therefore, it is important to study the spread of plasmids in detail in order to initi-
ate possible countermeasures. The classification of plasmids can provide insights
into the epidemiology and transmission of plasmid-mediated antibiotic resistance.
The previous methods to classify plasmids are replicon typing and MOB typing.
Both methods are time consuming and labor-intensive. Therefore, a new approach
to plasmid typingwas developed, which uses word embeddings and support vector
machines (SVM) to simplify plasmid typing. Visualizing the word embeddings
with t-distributed stochastic neighbor embedding (t-SNE) shows that the word
embeddings finds distinct structure in the plasmid sequences. The SVM assigned
the plasmids in the testing dataset with an average accuracy of 85.9% to the correct
MOB type.

Keywords: Plasmid typing · Word embedding

1 Background

1.1 Plasmids

Plasmids are extrachromosomal DNA elements with a characteristic number of copies
in the host. Plasmids are found in representatives of all three domains Archaea, Bacteria
and Eukarya [1]. Plasmids encode nonessential but often valuable genes for their host
[2]. The plasmids allow genes to be horizontally exchanged via recombination and
transposition. Since plasmids can enter new hosts via a variety of mechanisms, they can
be regarded as a pool of extrachromosomal DNA that is shared across populations. The
acquisition of such genes on plasmids enables the bacteria to react quickly to changing
environmental influences, e.g. the presence of antibiotics, which would not be the case
if bacterial fitness were only dependent on de novo evolution [3]. Plasmids contain
genes that are responsible for initiation and the control of replication. In addition they
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contain genes that encode a wide variety of phenotypes that help their bacterial hosts to
exploit and adapt to their environments [4]. These properties are considered as additional
functions and include antibiotic and heavy metal resistance, metabolic properties and
pathogenicity factors. Such phenotypes have important consequences for human and
animal health, environmental processes and microbial adaptation and evolution [5].

1.2 Plasmid Typing

The classification of plasmids can provide insights into the epidemiology and trans-
mission of plasmid-mediated antibiotic resistance. The previous methods to classify
plasmids are replicon typing and MOB typing which use variation in replication loci
and relaxase proteins, respectively. Replicons include various loci, none of which are
universally present in plasmids [6]. On the other hand, relaxases are thought to occur
in all plasmids mobilized by the relaxase-in-cis mechanism [7, 8]. Nevertheless, the
relaxase homology may be distant, even in plasmids of the same MOB type [9]. Recent
studies show that the current typing schemes are not able to classify the complete diver-
sity of plasmids [10]. As an example, 11% of the plasmids from the dataset (n = 2097)
of Orlek et al. [10] could not be replicon-typed or MOB typed.

1.3 Word Embeddings

In natural language processing (NLP) a powerful method to represent language is by
learning so-called embeddings. An embedding is a vector representation of a text data
token. Commonly the tokens are words, and therefore we refer in our explanations to
word embeddings, but the method is not restricted to words. In contrast to word vec-
tors created by one-hot-encoding, which are binary, sparse (mostly made of zeros),
high-dimensional (same dimensionality as vocabulary), word embeddings are low-
dimensional floating-point vectors. In a good word embedding space synonyms have
similar word vectors. Also, distance between word vectors reflect semantic and syn-
tactic distances between those words [11]. A popular training technique to learn word
embeddings is Word2Vec [12, 13]. Word2vec consists of a two-layer neural network
that is trained on the current word and its surrounding context words. The use of context
words is inspired by the linguistic concept of distributional hypothesis, which states that
words that appear in the same context have a similar meaning [14].

1.4 Aim of Study

The aim of this study is to determine whether plasmids can be represented as word
embeddings, a method normally used in natural language processing, and subsequently
classified by machine learning methods.

2 Methods

2.1 Preparing the Dataset

In order to test the new classification method for plasmids, the database with the orig-
inal queries of Orlek et al. [15] was downloaded [16]. The database consisted of 2097
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fully typed, complete, clinically relevant Enterobacteriaceae plasmids from the NCBI
database. The data of the nucleotide sequences were loaded with the Biostrings package
version 2.36.4 [17] to R version 3.5.1 using RStudio version 1.3.959. The nucleotide
sequences were translated to amino acid sequences using the Biostrings package [17]
using the standard genetic code. All fuzzy and stop codons automatically translated to
X and *, respectively, were removed. To remove outliers, which could influence the
training behavior of the machine learning methods, a box plot of the plasmid length was
created. All plasmids marked as outliers were removed.

2.2 Embedding Representation

Inspired by NLP word embeddings, we created an embedding representation for amino
acid sequences. Following Asgari and Mofrad [18], all amino acid sequences were split
into triplets. Then, from one sequence, three sequences were created (see Fig. 1). These
triplets are the “words” for which the word embedding is constructed. This is done since
the most common techniques to study sequences in bioinformatics involves fixed–length
overlapping n-grams [19–21].

Fig. 1. Schematic illustration of the generated three sequences [18].

The word embeddings were trained using the Skip-Gram algorithm. To calculate the
vectors for the embedding the R-package wordVectors version 2.0 was used [22]. The
Skip-Gram model learns embeddings by trying to predict context words based on the
given target word. Context words are words that occur in a defined window around the
target word. Skip-Gram tries to find the corresponding n-dimensional vectors for a given
training sequence of words, which maximize the log probability function. This gives
similar words a similar representation in vector space

argmaxv,y
1

N

N∑

i=1

∑
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log p
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)
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(
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)
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′T
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where N is the length of the training sequence, 2c is the considered window size for the
context,wi is the center of the window,W is the number of words in the dictionary and vw
and v’w are input and output n-dimensional representations of word w, respectively. The
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probability p(wi+j |wj) is defined by a softmax function. Hierarchical softmax or negative
sampling are effective approximations of such a softmax function. The wordVectors
package uses negative sampling to approximate the softmax function. Negative sampling
uses the following objective function to calculate the word vectors

argmaxθ

∏
(w,c)∈D p(D = 1|c,w; θ)

∏
(w,c)∈D′ p(D = 0|c,w; θ) (2)

whereD is a set of word and context pairs (w, c) existing in the training data set (positive
samples) and D′ is a randomly generated set of false word and context pairs (w, c)
(negative samples). p(D= 1|w, c; θ) is the probability that (w, c) comes from the training
data. p(D = 0|w, c; θ ) is the probability does not come from the training data. The
term p(D = 1|c, w, θ ) can be defined as a sigmoid function which can be used for the
wordVectors

p(D = 1|w, c; θ) = 1

1 + e−vcvw
(3)

Here, the parameters θ are the word vectors we train within the optimization framework
vc while vw ∈ Rd are vector representations for the context c and thewordw, respectively
[23]. In Eq. (2), the positive samples maximize the probabilities of the observed (w, c)
pairs in the training data, while the negative samples prevent all vectors from having
the same value by not allowing certain incorrect (w, c) pairs [18]. To train different
embeddings different vector sizes and context sizes were chosen. The vocabulary to
train the word embeddings were all 8000 possible amino acid triplets. We then represent
the entire plasmid as a word embedding, where the amino acid triplets of each reading
frame were added for each plasmid. This method follows Asgari and Mofrad [18].

2.3 t-Distributed Stochastic Neighbor Embedding (t-SNE)

High-dimensionalword embeddings can be displayed and interpreted two-dimensionally
with the t-SNE algorithm. We used the R-package Rtsne version 0.15 [24]. To evaluate
whether the individualMOB types are grouped into clusters, the data points were colored
according to the MOB types assigned by Orlek et al. [10]. The t-SNE algorithm works
as follows: first the similarity score in the original space is calculated from a distance
matrix (Euclidean distance) of the input objects

pj|i =
exp

(
−||Dij||2

2σ 2
i

)

∑
k �=i exp

(
−||Dij||2

2σ 2
i

) (4)

which is then symmetrized using

pij = pj|i + pi|j
2n

(5)

The parameter σ of each object is selected so that the perplexity in the original
space takes a value as close as possible to the defined perplexity. The perplexity is a
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parameter that controls howmany nearest neighbors are considered when the embedding
is generated in low dimensional space. For the low dimensional space, the Cauchy
distribution (t-distributionwith one degree of freedomwhere the degree of freedom is the
number of parameters that may vary independently) is used to represent the distribution
of the objects

qij =
(
1 + ∣∣∣∣yi − yj

∣∣∣∣2
)−1

∑
k �=l

(
1 + ||yk − yl ||2

)−1 (6)

The positions of the points in the low dimensional space are determined by mini-
mizing the Kullback-Leiber divergence (KL) of the distribution Q to the distribution P.
To minimize the KL-divergence a gradient descent algorithm is used. Since for large
datasets a normal gradient descent algorithm would be very computational expensive
O(n2), a Barnes-Hut implementation of the algorithm, is used which leads to a com-
putational complexity of nlog(n). The θ parameter was set to zero to perform an exact
t-SNE. The max_iter parameter was set to 1000. The PCA parameter was set to TRUE
to perform a PCA prior to the t-SNE. To find the best parameters for the perplexity, each
model was iterated over 50 cycles. The perplexity parameter was adjusted from 1 to 50.
The best fitting perplexity value was chosen according to the lowest KL-divergence.

2.4 Support Vector Machine Classification

To classify the plasmids based on the embedding representation support vector machines
are used. SVM with a linear kernel was chosen and implemented with the caret pack-
age 6.0–81 [25]. The caret package uses the implementation of the SVM algorithm by
kernlab [26]. The SVM algorithm of the kernlab package uses the Sequential Minimal
Optimization (SMO) algorithm of Platt [27] to solve the quadratic programming (QP)
optimization problem of the SVM. Training an SVM usually requires solving a very
big QP optimization problem. The SMO algorithm breaks these big QP optimization
problems into a series of smallest possible QP problems. The small QP problems can
then be solved analytically, saving the time consuming numerical solving of a large QP
problem [27]. To train the SVM, the data were first centered by subtracting the mean
and then scaled by the division of the standard deviation. The partition of the data was
0.8/0.2 for training and test for each iteration. The method for optimizing the tuning
parameters was random search.

2.5 BLAST

The BLAST searches to confirm the MOB types of before unclassified plasmids were
carried out using the NCBI online tool tblastn version 2.8.1. The algorithm parameters
were set to default. The search results were then filtered according to the used thresholds
for original MOB type queries used by Orlek et al. [10].

2.6 System

The analyseswere run on aPCequippedwith an Intel Core i7-3930Kprocessor cadenced
at 3.20 GHz (6 physical cores, 12 logical cores) and with 64 GB of physical memory.



Typing Plasmids with Distributed Sequence Representation 205

3 Results

3.1 Data Exploration

Unknown plasmids account for around 700 occurrences in the data set with the original
queries of Orlek et al. [15]. The types MOBF and MOBP occur about 450 times each.
MOBQ and MOBH were already significantly less present with around 150 counts. The
types MOBC and in particular MOBV were very limited represented, which could lead
to classification problems. The dataset was analyzed to check the plasmid lengths and
the MOB class distribution (Fig. 2). In total, 61 plasmids were marked as outliers. Even
though all outliers are most likely plasmids, they were removed from the dataset, as
outliers can have a negative effect on the training of the embedding. The average length
is shown in the figure as a dashed line.MOBV plasmids were the shortest in length, while
the group of MOBQ plasmids encompassed mainly short plasmids. The mean lengths of
MOBC,MOBP and unclassified plasmidswere almost comparable. The longest plasmids
were in the MOBF and MOBH group, with MOBH plasmids being longer than MOBF
plasmids. Except for the MOBV plasmids, all plasmids had a variance of about 50 kb in
length.

Fig. 2. Distribution of the length of the different MOB types of plasmids. Bp: base pairs.
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3.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

The lowest KL-divergence was achieved with a perplexity of 49. Figure 3 shows the
1000-dimensional space of the embedding reduced to two dimensions. Each point is a
vector representation of a plasmid. A clearly shaped structure was obtained.

Fig. 3. Two-dimensional space representation of the 1000-dimensional word embeddings of the
plasmids.

For the embeddings with 1000 entries, the SVM assigned the plasmids in the testing
dataset with an average accuracy of 85.9% to the correct MOB type. With multi-class
classification problems, however, the accuracy does not show the complete picture of the
performance of the classifier. The samewould apply to a data setwith imbalanced classes.
Cohen’s kappa statistics (κ) is a measure which can handle multi-class and imbalanced
classes. For themodel, κ was 0.80, indicating that the value is good to excellent according
to Greve and Wentura [28] and at the upper end with substantial agreement according
to Landis and Koch [29]. Table 1 shows that the classification of MOBF and MOBH
was very successful with 93.8% and 97.4% balanced accuracy. The confusion matrix
also showed that MOBH was not confused with MOBF, although the plasmids in Fig. 3
were very close to each other. MOBP was detected with 87.6% accuracy, which is still
above the SVM average for all classes. However, MOBP was confused with MOBF in
10.7% of the cases. Furthermore, MOBP was in 3.6% wrongly assigned to type MOBQ.
Orlek et al. [10] reported problems to distinguish between MOBP and MOBQ. In the
prediction column ofMOBQ, 13 of the total of 51MOBQ plasmidswere assigned to class
MOBP, which corresponded to 25.5% of all MOBQ plasmids. However, this also meant
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that the representation of the plasmids with embeddings worked well, as the results were
congruent with the previously obtained results fromOrlek et al. [10]. MOBQ andMOBV
showed the smallest accuracies, related to an underrepresentation of both classes in the
training set. In the testing dataset, only very few plasmids with the respective classes
were present and an inconsistent classification has a fatal effect on the accuracy.

Table 1. Confusion matrix SVM.

Predictions Reference Balanced accuracy

MOBC MOBF MOBH MOBP MOBQ MOBV

MOBC 14 2 1 0 2 0 0.812

MOBF 2 135 0 15 2 0 0.938

MOBH 0 0 37 0 0 0 0.974

MOBP 6 5 1 120 13 2 0.876

MOBQ 0 0 0 5 34 0 0.826

MOBV 0 0 0 0 0 1 0.667

To investigate whether the SVM can be used to classify plasmids, which were pre-
viously unclassifiable by Orlek et al. [10], 939 unclassified plasmids from the data set
were tested with the SVM. The plasmids that could get classified with the SVM were
subsequently checked with BLAST against the corresponding proteins used by Orlek
et al. [10] for testing. Table 2 shows that 96 plasmids were assigned to a MOB type.
Taking into account the thresholds of Orlek et al. [10], 62 plasmids could, after checking
with BLAST, still be assigned to a MOB type with relative security. This corresponds
to a decrease of unclassifiable plasmids of 3.04%.

Table 2. BLAST verification of the SVM predicted MOB types.

MOB type Total predicted Verified with
BLAST

Number of predictions <

E-value threshold
E-value
threshold

MOBC 101 42 42 0.001

MOBF 127 14 8 0.01

MOBH 17 8 0 0.01

MOBP 582 27 12 1

MOBQ 92 2 0 0.0001

MOBV 20 3 0 0.01

Total 939 96 62 –



208 M. Kaufmann et al.

4 Discussion

The aim of this work was to represent plasmids as word embeddings and to perform
MOB typing using the word embeddings. Asgari and Mofrad [18] were able to classify
proteins using word embeddings. However, the method has never been applied to whole
plasmids. As could be shown in this work, the word embeddings of entire plasmids can
be used to assign the correct MOB types to these plasmids. Based on the available data,
MOB typing using SVM seems to be the most successful approach. On the other side,
it is possible that with more plasmid sequences present, an approach based on a neural
network outperforms the SVM.

By means of the t-SNE of the word embeddings, it became clear that the word
embeddings represent an up to now not identified structure found in plasmids. The
position on theY-axis could correlatewith the length of the plasmids. However, the factor
that influenced the position on the X-axis could not be identified. The reconstruction of
the plasmid typing, where only the word embeddings of the entire amino acid sequences
were used, was functional. In the data set, the accuracy of the test data set was 85.9%,
even though the whole plasmid sequences were only represented by a vector of 1000
entries. Nevertheless, the important factors to assign a MOB type seem to be precisely
represented in the word embeddings. As the current version of the SVMwas only trained
on the known MOB types, one of the currently included MOB type is assigned to each
plasmid, since the SVM does not know an unknown type. Nevertheless the MOB type
could be set for 62 plasmids, which were before not assigned to any MOB type. These
results were then confirmed with a BLAST search.

The classification of the word embeddings is currently based on the biological app-
roach of MOB typing. As long as it is not clear for the already used biological method,
which proteins have to be used as queries to get the best results or how many different
MOB types exist, the word embedding classification cannot be improved. However, as
soon as more biological information about MOB types is available, reconstructing typ-
ing with word embeddings offers an interesting alternative. The model only needs to be
trained once and can then readily be used. An assignment to a MOB type only takes a
fraction of a second and does not require any time-consuming BLAST analysis.

For the next steps it would be conceivable to create a new data set of plasmids.
The GenBank database at NCBI continuously includes more plasmids from genome
sequencing projects and probably contains a more balanced representation of all plasmid
types than at the creation of the used dataset by Orlek et al. [10]. Furthermore, the scripts
can be optimized to improve performance. Further tuning of the hyperparameters of
the SVM will lead to even better results in the future. It is also conceivable that the
MOB typing by word embeddings can be used to establish previously unknown MOB
types. As shown in this paper, machine learningmethods offer interesting alternatives for
conventional bioinformatics approaches andwill certainlymake theirway into biological
research soon.
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Abstract. The YOLO (v1/v2/v3) algorithm is a well-known, exten-
sively used, and much studied detection algorithm. YOLO detects objects
in an image by predicting their bounding boxes and class distributions.
This paper studies a modified version of the YOLO model applied to a
specific problem: the detection of a set of feature points in a one-class
setting. We apply this approach to the particular case of detecting QR
Codes. Instead of detecting rectangular, axis-aligned bounding boxes, our
objective is to detect a set of keypoints—the QR Code’s finder patterns—
and hence the model’s name KP-YOLO. Although QR Code detection
was chosen to showcase this experiment, the KP-YOLO algorithm can
be applied to other keypoint-based detection problems (under certain
constraints).

Keywords: Object detection · Convolutional neural networks ·
QR Codes

1 Introduction

Detection algorithms have greatly improved in the last few years, thanks to the
advent of deep learning and, more specifically, convolutional neural networks
(CNNs). Many different CNN architectures have been proposed for the task of
detecting objects in an image. The first generation of such algorithms proceeded
in two steps: a first process proposed a number of regions of interest (ROIs) and
a second one classified these regions [4,5,13]. This approach’s biggest weakness
is its relative slowness [11].

YOLO (You Only Look Once) [10] was one of the first models not to require
this two-step approach. Instead, it divides the image into a grid (multiple grids
in later versions). Each grid cell can detect a set of objects whose center lies
within that particular cell. To allow for the detection of more than one object
per grid cell, it uses several anchor boxes. Thus, every object is associated with
a grid cell and with the anchor box that best fits its bounding box. After the
inference step, a non-maximum suppression step is performed in order to keep
only the best candidates and remove overlaps.
c© Springer Nature Switzerland AG 2020
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Other models, using similar approaches, brought enhancements to the origi-
nal YOLO algorithm. For example, the single-shot multibox detector [8] model
uses multiple grids at different stages in a CNN in order to better detect objects
at different scales. ResNets [6] introduces the novel idea of shortcuts that sig-
nificantly enhances the performance of deep neural networks. The latest version
of the YOLO algorithm (v3) integrates many of these enhancements, making it
both more precise and faster than previous versions [12].

2 State of the Art

QR Code detection is traditionally performed using classic computer vision algo-
rithms, i.e., hand-tuned algorithms rather than ones based on a machine learning
process. This approach is generally reliable and fast; it also has the advantage
of being easier to analyze when an error occurs. However, in recent years, deep
learning has been investigated as a replacement for or a complement to classic
algorithms. Deep-learning-based algorithms could potentially operate on very
blurry and distorted images.

Leonardo Blanger et al. [3] used multiple variations of the popular Single Shot
Detector architecture [8] on the task of QR Code (bounding boxes) detection.
By incorporating the detection of the finder patterns to the task of QR Code
detection, Blanger et al. observed enhanced detection performance. Their paper
used axis-aligned bounding boxes for detection.

Instead of detecting axis-aligned bounding boxes, another approach is to work
at the pixel level and try to assign a particular label to each pixel. Qijie Zhaoa et
al. [15] used a dual pyramid structure-based segmentation network, BarcodeNet,
in conjunction with a synthetic dataset, to detect QR Codes at the pixel level.
Kazuya Nakamura et al. [9] studied a similar approach, using a CNN to decode
QR Codes under non-uniform geometric distortion. They treated the problem of
localizing the finder patterns as a binary classification problem: given a target
pixel, it assigned one of two kinds of labels, either “a finder pattern” or “others”.
Baoxi Yuan et al. [14] used a modified version of Mask R-CNN [5], which they
called MU R-CNN, for the segmentation of QR Codes, also at the pixel level.

To sum up, these approaches all fall into one of the following two categories:

– A classic approach, using regular axis-aligned bounding boxes.
– A pixel level (segmentation) approach, where a label is assigned to each pixel

(whether the output image is the same size or smaller than the input image).

3 Experiment

This paper proposes a third approach: we detect keypoints that can be used
to draw a non-rectangular boundary around an object of interest. This app-
roach can be applied to an arbitrary number of keypoints if they respect certain
constraints.



KP-YOLO: A Modification of YOLO Algorithm 213

3.1 Datasets

The quality of the dataset is one of the most important factors for success when
developing deep learning. We started our experimentation with a dataset of
approximately 10 k video frames of real QR Codes taken from different angles and
distances and using different light conditions. This dataset was then augmented
(see Data augmentation) to produce a dataset of approximately 1.5M images.

We quickly realized that our models were overfitting to the QR Codes’ content
(although we had a great variety of shots, they were always shots of the same
ten or so physical QR Codes). To solve this problem, we generated an additional
dataset of 500k synthetic images, which we then also augmented, reaching a total
of 2.5M annotated images.

This process was the first of three key steps used to reduce the problem of
overfitting. The second step was a massive reduction in the number of parameters
in our model, and the third was the use of dropout.

Data Augmentation. To help our models to generalize better, each image from
our original dataset (real + synthetic images) was used to generate a number of
additional images by applying random transformations such as cropping, rotation,
blurring, and noise. Examples of the augmented images can be seen in Fig. 1.

Our experience has shown us that it is important for the augmentation to be
representative of the transformations that a QR Code might experience under
real-world conditions. Otherwise, the models will learn the abnormal aspects
and perform poorly when tested on real images.

Synthetic Dataset. To create our synthetic dataset, we used an open dataset [1]
composed of 100k random images as backgrounds. We then generated random QR
Codes of different sizes and intensities and projected them randomly onto these
backgrounds. The random projections were chosen so as to represent common,
realistic optical effects. Examples of the synthetic images can be seen in Fig. 2.

Creating a dataset of photos of real QR Codes is a time-consuming and
costly task. However, training models using entirely synthetic datasets is also

Fig. 1. Augmented training images
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Fig. 2. Synthetic training images

ill-advised, as it would likely cause the models to perform poorly with real
images. For an acceptable balance, we used the real images for the detection
assessment and the synthetic ones for the localization assessment since we needed
a ground truth.

3.2 Model

Our deep learning model, shown in Fig. 3, is a modification of the YOLO v3
model, which we chose because it is widely known (it is easy to find open-source
implementations in different languages and frameworks) and yields good results
in comparison to other models [12].

There are five differences between our model and the standard one:

– The input size is 256 × 256 (instead of 416 × 416 in the original model). This
resolution is sufficient to clearly distinguish the finder patterns and optimize
the model’s training and execution time.

– The output grid sizes are 8, 16, and 32 (instead of 13, 26, and 52). This comes
from the modification of the input size and fits better with the number of QR
Codes present in the images.

– There are far fewer channels. One of the first problems encountered with KP-
YOLO was overfitting. This was expected, however, since detecting finder
patterns is easier than detecting thousands of different classes of objects.
Reducing the number of channels was one of the elements that helped with
this problem.

– The components of the output grid’s channels have different meanings in
KP-YOLO. The first component represents the probability that the center
of gravity of a set of finder patterns is inside this specific cell. The other 6
components represent the (normalized) finder patterns’ coordinates.

– KP-YOLO’s loss function considers an arbitrary number of keypoints in a one-
class setup under some constraints. More details are given in the subsection
on the Loss function.
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Fig. 3. Model architecture



216 N. Hussain and C. Finelli

FC vs. NO-FC. In the past, it was usual to include two fully connected (FC)
layers at the bottom of a CNN model [7]. In recent years, this tendency has
changed, and it is now more common to have a CNN model with no fully con-
nected (NO-FC) layers.

We experimented with both model architectures. Since, by default, the stan-
dard YOLO v3 model does not have any FC layers, we built a model called KP-
YOLO-FC, which features two additional FC layers at the end of each detection
grid. We found that this increased the numbers of parameters considerably and,
with it, the tendency towards overfitting. Hence, the removal of these FC layers
was beneficial, both in terms of generalization and execution time performance.

One important thing to keep in mind when removing the FC layers is that this
restricts the number of pixels from the input image that influence a particular
pixel of the output image. If the network does not have enough convolutional
layers, some output pixels may end up not seeing important parts of the input
image.

Loss Function. It is in the loss function that our model and the original YOLO
v3 differ most. The source of this difference is that instead of detecting bounding
boxes by specifying their center, width, and height, we are specifying a number
of keypoints with their relative coordinates.

More specifically, the depth of our output is 7: the first component represents
the probability that the center of gravity of the QR Code is inside the grid cell,
the six following components represent the normalized coordinates of the three
patterns.

So, for a particular cell i, the first component pi is set to 1 if the center of
gravity of a QR Code falls into it and to 0 otherwise. The coordinates of the
finder patterns (xij , yij), j = 1, 2, 3 are given relative to the center of the cell
i, with the distances expressed relative to the image’s width and height; these
normalized coordinates are therefore always between −1 and 1. See Fig. 4 for a
visualization of the coordinate system.

The loss can then be expressed as:

λ1

N

N∑

i=1

−pi log(p′
i) − (1 − pi) log(1 − p′

i) +
λ2

3N

N∑

i=1

pi

3∑

j=1

(xij − x′
ij)

2 + (yij − y′
ij)

2

where:

– pi, xi and yi are the labels associated with grid cell i for i = 1, 2, . . . , N .
– p′

i, x
′
ij and y′

ij are the outputs associated with grid cell i for i = 1, 2, . . . , N .
– Assuming the linear 7-dimensional output oi for cell i, we have

p′
i = σ(oi1) with σ(x) = 1

1+e−x ∈ [0, 1] the sigmoid function, and
(x′

i1, y
′
i1, x

′
i2, y

′
i2, x

′
i3, y

′
i3) = tanh(oik) with k = 2, 3, ..., 7.

– λ1 and λ2 are empirically chosen constants used to give equal importance to
the two terms of the loss function. In our experiment, we set λ1 = 1 and
λ2 = grid width ∗ grid height ∗ 5.
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Fig. 4. Coordinate system

3.3 Keypoint Constraints

Our algorithm imposes some constraints on the keypoints that it tries to detect:

1. The number of keypoints must be fixed. Our model does not yet support a
variable number of keypoints since the number of coordinates is determined
by the number of output channels. One way to mitigate this constraint would
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be to determine a maximum number of constraints and add a third coordinate
to each keypoint specifying whether it had been detected in the image.

2. Keypoints need to be distinguishable and intrinsically ordered. Otherwise,
the model will mix them up and will not be able to learn anything. In our
dataset, the finder patterns were ordered using the middle keypoint as the
first one, and then moving clockwise to the other two keypoints (Fig. 4).

4 Results

Since our annotation method is different from that of our peers, comparing
our results with theirs is not possible, as explained in the section on the State
Of The Art. Indeed, approaches using rectangular bounding boxes succeed in
detection but not in localization. On the other hand, pixel-based methods can
localize finder patterns but cannot retrieve their intrinsic order. Furthermore,
these methods could miss some finder patterns, forcing us to handle these cases
separately. As an alternative, we first compared our model with the classic app-
roach, that is, the approach using a hand-tuned, step-by-step algorithm, with no
learning involved. We then compared two versions of our model: one with FC
layers and one without. This empirical comparison helped us to highlight our
model’s strengths and weaknesses, with an emphasis on its future (potentially
industrial) practical usage.

All measurements were performed using the following platform:
AMD R© RyzenTM ThreadripperTM 1950X 16-Core Processor x32, GeForce GTX
1080 Ti, 32 GB RAM, Ubuntu 18.04 LTS.

4.1 KP-YOLO vs. Classic Approach

We compared the results obtained using the KP-YOLO and KP-YOLO-FC mod-
els to those obtained using a conventional QR Code scanner. We used the Icare
Institute’s QR Code library [2] as the reference for implementing the classic
algorithm.

To evaluate the classic approach, we synthetically generated a test dataset of
500 images. Using a synthetic dataset as a test set is not ideal, for the reasons
mentioned above (see Synthetic dataset), but this was the only way to generate
a ground truth independently of a classic algorithm (Fig. 5). As a metric, the
Mean Squared Error (MSE) was defined as follows:

MSE =
1

Ndetected QR Codes

Ndetected QR Codes∑

i=1

1
6

3∑

j=1

[(xij − x′
ij)

2 + (yij − y′
ij)

2]
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Fig. 5. Ground truth vs. prediction
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Fig. 6. Example of test (real) images

Table 1. KP-YOLO vs. Classic approach

Algorithm Recall MSE MedSE Execution time

Classic 0.476 0.155 0.139 5.9ms

KP-YOLO 0.968 30.320 0.513 19ms

KP-YOLO-FC 0.868 52.435 11.009 39ms

The results, shown in Table 1, confirmed our initial intuition that the KP-
YOLO model was capable of detecting QR Codes in images where the classic
approach failed, but this was at the cost of a far worse performance in the
prediction of the finder patterns’ positions and slower execution time. This may
be explained by the fact that neural networks can be unstable, depending on
their inputs. In such a case, the predicted output is far from its expected value,
and it yields outliers with large deviations. Since the median is far less affected
by outliers than the mean is, a modified version of MSE (MedSE) is also shown to
illustrate this phenomenon. The MedSE consists of computing the median over
the Squared Errors of each detected sample. Based on this metric, KP-YOLO’s
loss in performance is much more acceptable.

A word of caution regarding the execution time: when it comes to deep learn-
ing models, accurately measuring the execution (inference) time is hard. This
is because these algorithms are highly dependent on the particular framework,
optimizations, and hardware used to run the model. Making one small optimiza-
tion may make the same model run 10× faster. Since we did not spend much
time trying to optimize our models’ execution time, these figures should be taken
as mere indications and not as definitive measurements.

4.2 KP-YOLO vs. KP-YOLO-FC

We also compared two versions of our model, one with two FC layers at the end
of each output grid (KP-YOLO-FC) and one without (KP-YOLO). The aim was
to see whether adding FC layers would bring an improvement that was worth
the additional execution time and memory usage.

We tested our models on two test datasets: the synthetic dataset used in our
first experiment (500 images) and a second one composed of 255 real images
annotated using the classic algorithm (see Fig. 6). The results are shown in
Table 2.
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Table 2. KP-YOLO vs. KP-YOLO-FC (Learning Time: per batch of 16 images, and
Inference Time: per image)

Model Number of
parameters

Learning
time

Inference
time

Error on
real images

Error on
synthetic images

KP-YOLO 912,009 57ms 19ms 0.1706 0.0632

KP-YOLO-FC 102,616,628 68ms 39 ms 0.2624 0.7861

Our results showed that the FC layers provided no improvement at all. On
the contrary, the two FC layers increased the number of parameters by a factor
of 113, which not only slowed down training and inference but also accentuated
the problem of overfitting.

This confirmed the state-of-the-art tendency on CNNs which is to remove
FC layers altogether.

5 Conclusion

Our experiment showed that YOLO architecture could be modified to detect
keypoints associated with a particular class of objects, provided that these key-
points respect a number of constraints. We showed how the KP-YOLO model
compared to hand-tuned, classic approaches, as well as its advantages and dis-
advantages.

We believe our model could be used for the detection of objects in an indus-
trial setting, and we think it would be interesting to extend this approach in two
ways:

1. Alleviate the constraints on the keypoints: find a way to detect an arbitrary
number of keypoints that are indistinguishable from each other.

2. Alleviate the one-class constraint: extend the KP-YOLO model to a multiple-
class setup, with each class having its own set of keypoints.
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Abstract. In order to ensure high productivity and quality in industrial
production, early identification of tool wear is needed. Within the context
of Industry 4.0, we integrate wear monitoring of solid carbide milling and
drilling cutters automatically into the production process. Therefore, we
propose to analyze wear types with image instance segmentation using
Mask R-CNN with feature pyramid and bounding box regression. Our
approach is able to recognize the five most important wear types: flank
wear, crater wear, fracture, built-up edge and plastic deformation. While
other methods use image classification and classify only one wear type
for each image, our model is able to detect multiple wear types. Over
35 models with different hyperparameter settings were trained on 5,000
labeled images to establish a reliable classifier. The results show up to
82.03% accuracy and benefit for overlapping wear types, which is crucial
for using the model in production.

Keywords: Tool wear detection · Machine learning · Convolutional
Neural Network (CNN) · Mask R-CNN · Supervised learning ·
Multi-class classification · Image segmentation

1 Introduction

Cutting tools used in machining production wear out in daily operation after
a certain period of use. Generally speaking, one could say: The tool becomes
blunt. To prevent excessive or rapid wear, it is advisable to identify the type
of wear, which can vary depending on the material and cutting parameters.
Currently, wear types for different tools are not classified and evaluated auto-
matically, instead they have to be examined manually by a technical expert
or tools have to be used until they become broken. The goal of Industry
4.0 and digitization is to automate industrial processes to increase efficiency.
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Therefore, neural networks are a popular method for implementation in the field
of machine learning algorithms. Our approach to detect wear is based on a special
Convolutional Neural Network that combines image segmentation and classifi-
cation. Therefore, standardized images taken from the experimental laboratory
of the company MAPAL Dr. Kress KG1 are used. For future practice, images
taken from different camera systems (e.g. smartphones, adjustment tools) should
reach a sufficient classification result. This offers various use cases for predictive
maintenance, starting with a mobile application and ending with a completely
automated process of quality assurance.

1.1 Related Work

To measure tool wear, methods such as real-time data monitoring [2,16,22] or
direct measurement are often used [16,21]. These variants of measurement are
suitable if the data is recorded continuously and the tool is tracked during its
lifetime. In practice, however, tools are often used on different machines in dif-
ferent applications and it is not economically feasible to analyze how each tool
is used over time. For this reason, it is important to estimate the wear status
of a tool on a snapshot basis. Hence, the history and application of the tool
does not matter when analyzing wear. Therefore, this work uses camera-based
snapshots for wear detection and classification. In the field of image analysis
various methods and approaches exist to classify wear. At first, a distinction is
made between different classes: Papers like [3,8] distinguish two or three differ-
ent categories of wear: Either broken and unbroken [8] or new, used and broken
[3]. In comparison, this paper differs between five wear types: flank wear, crater
wear, fracture, built-up edge and plastic deformation. The benefit of an accurate
determination of wear is that causes can be identified with higher probability and
cutting parameters or the use of coatings can be optimized. We propose using
Mask R-CNN as a neural network to classify wear of solid carbide milling and
drilling tools. To classify various wear types for each cutting edge, our method
uses image segmentation and analyses each Region of Interest (RoI) individually.
As wear types overlap to some extent, this enables a precise classification.

In terms of methodology, some of our approaches were influenced by other
papers and led to a successful result: To record the images - as [3,20,24,25] -
the position, exposure and background of the tool or cutting edge are mostly
standardized. It is agreed that gray-scale images are adequate, since wear is
determined by the reflection and the difference in brightness, among other things
[3,8,9,20,24,25]. In addition, sources such as [8] and [24] are using image seg-
mentation to analyze sections individually and identify the edges of the tool. If
the image is divided in different regions, Support Vector Machines (SVMs) are
a popular classifier [9]. Some other works, such as [3], [5] and [20] are also using
neural networks of different kinds, e.g. Feed-Forward Neural Networks (FNNs
[5]) or Single Category-Based Classifier (SCBC [20]).

1 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG, URL: https://www.mapal.
com/.

https://www.mapal.com/
https://www.mapal.com/
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The paper is organized as follows: First we define different wear types and
describe our data set in Sect. 2. In Sect. 3, we explain our approach to classify
wear with Mask R-CNN. In an iterative implementation, we trained different
models with various hyperparameter settings, which is described in Sect. 4. The
results of the most promising models are presented in Sect. 5. Finally, we conclude
in Sect. 6 that classifying wear of solid carbide milling and drilling tools with
Mask R-CNN is possible and outperforms common classification methods.

2 Wear Classification of Milling and Drilling Tools

For the classification of the different wear types solid carbide milling and drilling
shank tools are considered. These tools are frequently used, but are complex to
analyze due to their multi-edged geometry. Drills create cylindrical holes in the
workpiece by rotation. There are various drilling methods and countless variants
of the tool. Milling cutters have several geometry-specific cutting edges and are
used on milling machines. To remove material, the tool rotates around its own
axis and the workpiece is moved over the machine table. For more information,
see [6,7]. In the following, these two tool groups are summarized as round tools.

flank face cutting faceguide chamfer

Fig. 1. Components of a drill: flank face (green),
guide chamfer (red) and cutting face (blue) (cf.
[19]). (Color figure online)

Round tools have a simi-
lar structure, consisting of flank
face, guide chamfer and cut-
ting face, see Fig. 1. Wear (see
Sect. 2.1) occurs at different
regions of a round tool, thus it
is required to record and ana-
lyze images of at least three
components to determine the
wear status of the tool. There-
fore, a detailed image is taken of
each component and is analyzed
separately. Then all results are
combined to identify the wear
type of the tool.

2.1 Wear Types

Tool wear is the abrasion of the tool cutting edge due to mechanical and ther-
mal stress. Depending on the stress on the tool, there are different types of wear.
Focusing on round tools we mainly considered [14] and [15] as a source of infor-
mation in addition to the advice of technical experts. Considering these sources,
the most important wear type classes are: flank wear, crater wear, fracture, built-
up edge and plastic deformation. According to consultation with experts, these
occur frequently on round tools and are relevant for industrial production.
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Table 1. Wear types with sketch and sample images (figures are partly taken from [15])

The types of wear are illustrated in Table 1. Despite the following samples
being depicted on milling tools, they apply to drilling tools, too.

2.2 Source Images to Classify Wear

Images are captured using the camera model UI-1460SE from iDS [13]. The
camera has a resolution of 2048× 1536 pixels (3.15 MP) and a size of 3.2 µm per
pixel. For the exposure a LED cold light source (CV-KLQ-LED-9 [18]) is used.

3 Methodology to Classify Wear by Using Mask R-CNN

3.1 Preprocessing of Images

A total of 26,293 images of tool cutting edges are provided by the experimental
laboratory of MAPAL Dr. Kress KG (see Footnote 1). The images are sorted
according to their tool and wear types. For learning a neural network it is essen-
tial to consider an evenly distributed number of types and data that is as variable
as possible. Finally, 4,307 images (augmented to 5,577) are considered. As aug-
mentation methods, cropping and resizing were used to retain the tool cutting
position, which is essential for later implementation.

The images always measure 2048× 1536 pixels and contain three channels
(RGB). Most of them are standardized images, i.e. the exposure is always kept
to the cutting edge of the tool and the background is largely uniform. Depending
on the tool there is a different number of images, which rely on the number of
cutters. The cutting edges are not always in the same position on the images,
which makes it difficult to detect wear. During preprocessing, the images are
scaled, normalized and transformed to gray-scale, resulting in uniform images
with the same size, the same value range and only one channel.
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As wear is not identified by the color but by the reflection of the light, a gray-
scale image is sufficient (cf. Sect. 1.1). The images are divided into a training
(60%), validation (20%) and test dataset (20%). The training and validation
sets are used during the learning process of the neural network, the test dataset
is used separately for evaluation.

3.2 Labeling of Images

Fig. 2. Interface of the VIA tool [4] with an image of a flank
face of a drill with fractures and flank wear

The images are labeled
with the help of tool
experts. The wear
types are marked on
the cutting edge of
the tool. As a result,
all shapes denoting
wear are exported to
a JSON file. To label
the images, the VGG
Image Annotator [4]
is used, as proposed
by the authors of
Mask R-CNN [1]. An
example of the label-
ing is shown in Fig. 2.

3.3 Model Selection

For classifying wear types, Convolutional Neural Networks (CNN) are consid-
ered. Convolution is an operation where an image is transformed by a kernel
matrix, i.e. the image gets filtered. Since several network architectures of CNNs
exist, we have to assess which one is able to classify wear types.

First the VGG16 [23] is considered. It is a deep CNN, which is often used for
image recognition and consists of Convolution, Max Pooling and fully-connected
layers. We have chosen this network first, because it is clearly structured and
can be used for many application scenarios. The most difficult parts of wear
type classification are the proportion of small wear regions to the image size and
overlapping wear types. VGG16 is able to detect one class per image and does
not adapt its features to small objects, thus its results are insufficient for our
requirements. The objective was to detect all occurring wear types and then to
find the one with maximum size and expression.

Mask R-CNN [12] is used for image segmentation and object recognition,
which can be used to classify multiple wear types for each image. R-CNN stands
for region-based Convolutional Neural Network.
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Mask means that the output of the model contains a binary mask over each
segmented object. Therefore, Mask R-CNN is able to classify various objects
in parallel but independent of each other. Nevertheless, this makes the net-
work complex and difficult to implement, but it is flexible in its application and
promises high accuracy as long as enough training data is available.

3.4 Network Architecture of Mask R-CNN

Using Mask R-CNN, the classification of an image is divided into three steps (cf.
Fig. 3 and [12]):

Fig. 3. Mask R-CNN [12]

1. Bounding Boxes, i.e. rectangu-
lar boxes, are placed around the
objects to be detected.

2. Classification with CNN : Each
box or RoI is classified individu-
ally with a CNN.

3. Binary Mask : The output is
extended by a binary mask, which
is placed over the object as an out-
line within a bounding box.

Mask R-CNN was developed from Faster R-CNN [10], which is an improvement
of the original R-CNN [11]. The network architecture of the Mask R-CNN is
divided into two parts:

– The convolutional backbone architecture performs feature extraction over the
entire image. This part consists of a ResNet of depth 50 or 101 (depending
on the configuration) and a Feature Pyramid Network (FPN).

– The head of the network performs bounding box detection, i.e. classification
and regression, and creates a mask for each RoI.

Especially for the identification of small objects, the Pyramid Network feature
is intended to improve the classification, which is an advantage for the detection
of wear types in images of tool cutting edges.

3.5 Using Mask R-CNN for Model Training

The Mask R-CNN reference implementation based on Python 3, Keras and
TensorFlow is provided on GitHub [1]. To apply transfer learning, pre-trained
weights of MS COCO [17] are given. So first the code is adapted to our six-class
segmentation problem and several parameters of the network are adjusted for
better performance. The six-class problem distinguishes five wear types and the
class new - technically speaking the class new stands for the background class.
In total, 4,307 images are labeled and used for training and evaluation of the
network. The dataset is split into 60% training set, 20% validation set and 20%
test set. The images are passed to the network as input in JSON files.
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The JSON files include image paths, the respective wear class and coordinates
of the associated wear region. Important to mention is that the number of images
per class is equally distributed or else the detection will not work properly.

After some experiments, it is concluded that pre-trained weights improve the
flexibility of the network. In the beginning, overfitting has to be dealt with, which
results that Early Stopping is added, so that the learning curve can be stopped
at its optimum and the ideal weights can be saved. Starting with 500 images the
dataset is slowly increased and improved to handle overfitting. On average, about
100 epochs are needed to reach optimal results using transfer learning. Due to
the extensive amount of resources needed for model training, computing power
optimized for machine learning and graphic-intensive applications are utilized
from a public cloud provider. The training is conducted on a NVIDIA Tesla T4
graphics card with CUDA version 10.1 within a few hours. Two to four images
are analyzed in a batch on a single GPU. Finally, a representative classification
result can be achieved with a study of the network architecture, its parameters
and the image data.

3.6 Evaluation of Mask R-CNN Model

In order to be able to evaluate the classification results, an evaluation method is
defined. Depending on the confidence value, all masks of the detected RoIs that
exceed the confidence value threshold are displayed after the classification. The
default threshold of the Mask R-CNN is 0.7, that means all detected RoIs with
at least 70% probability are considered. To determine the unique result, only the
class with the highest probability is considered for evaluation. 30 images per class
are selected from the validation dataset. After each classification, the selected
class and its probability is saved. Finally, the average of all detected probabilities
is calculated for each class. These values are visualized in a confusion matrix.
On this basis all trained neural networks are analyzed in the same manner,
allowing for a uniform evaluation and comparison of the models. During our
study we observed stable classification results in this setting and therefore we
do not expect different results when changing the testset size within a suitable
range.

4 Implementation

In total 35 Mask R-CNN models are trained to compare different parameter
settings. Besides parameter optimization, such as learning rate or momentum,
the development of the final model is based on a step-by-step solution, which first
solves a simpler partial problem and finally transfer its solution to the overall
problem. Certain conclusions can be drawn from each training of a network,
where positive changes are adopted and negative ones are rejected. The first
step is the reduction of the classes from six to three classes: New (no wear),
flank wear (mild wear) and general wear (consisting of crater wear, fracture,
built-up edge and plastic deformation).
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Therefore, transfer learning was applied on the pre-trained weights of the
COCO dataset [17]. This achieves a significant improvement in the learning curve
(see Fig. 4), but the classification results are not sufficient yet. The detection rate
is about 60% and some wear types overlap with the class new, which is contra-
dictory. That is why a second reduction step is required: The concentration of the
classification on the cutting positions, i.e. on three different components of the tool
(cf. Fig. 1). Three different networks are trained, one network per cutting position.
This shows improvements, as the classification is easier, because the wear is now
mainly visible at the same position. During the analysis of different image types a
few observations have been made: Depending on the cutting position, some types
of wear occur more often or less on a certain component. Additionally, crater wear
occurs only on the cutting face. To proceed strategically, one of the three networks
is first trained and optimized on a cutting position, in this case the guide chamfer.
Until approximately 750 images per class are labeled for the pictures of the guide
chamfer, the overfitting improves as expected (see Fig. 4).

Fig. 4. Learning curve (loss = continuous line and validation loss = dashed line) of the
different reduction steps: First training (red), the reduction of classes (purple) and the
reduction of cutting positions (orange). (Color figure online)

Fig. 5. Samples of the classification results of the reduced task with three classes and
different networks per cutting position
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After tuning of the hyper parameters, the results of the classification are
satisfying, with an average precision of 82.03%. In order not to repeat the training
effort transfer learning is applied, from the neural network weights of the guide
chamfer to those of the cutting face and the flank face, respectively. Therefore,
fewer images and epochs are sufficient. For the cutting face, about 400 images
per class and only 20 epochs are adequate for good results. For the flank face
about 200 images and also 20 epochs are trained. In Fig. 5, some classification
results are shown. As output masks and class assignment are promising, the
problem is extended step-by-step to enable each network classifying all five wear
types and new cutting edges (six classes). The three networks are trained in the
same way as before, resulting in a similar learning curve (see Fig. 6).

Fig. 6. Learning curve (loss = continuous line and validation loss = dashed line) of
the three networks before and after the reduction: Guide chamfer (before: pink, after:
purple), cutting face (before: light blue, after: dark blue) and flank face (before: green,
after: dark green). (Color figure online)

Fig. 7. Learning curve (loss = continuous line and validation loss = dashed line) in com-
parison: The reduction of classes on the guide chamfer (before: pink, and after extension:
purple) and the extension to all images and classes (blue). (Color figure online)
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The crucial point is to generalize the findings of the three single networks to
one model, which is able to classify wear types for all cutting positions. Therefore,
one network with all images and classes is trained. The remaining issue of unequal
distribution of classes and cutting position explains the slightly increased loss,
as depicted in Fig. 7. Some sample results are shown in Fig. 8.

Fig. 8. Samples of the classification results of the extended task with one network for
all images and classes

5 Results and Discussion

As explained in Sect. 3.6, the results of the Mask R-CNN are presented and com-
pared using confusion matrices. The networks that were trained on the reduced
task of three classes perform best with an average accuracy of 74.65%. The net-
works on our extended problem with six classes reach 60.41%, see each confusion
matrix on Fig. 9 and 10. The confusion between classes can be mainly explained
by the images used for training and evaluation: Generally, the classes built-up
edge and plastic deformation rarely occur, therefore fewer images are available
and thus the classification results are inferior to other classes. In case of a slight
occurrence of wear, it is likely to be confused with flank wear. Crater wear, on
the other hand, is detected well, since it only occurs at one cutting position and
at a specific cutting shape and is therefore easier to identify. Finally, the Mask
R-CNN trained for all images (six classes and three cutting positions, see Fig. 11)
performs with 55.42% less than the three specific networks.

Fig. 9. Accuracy results of the three-class problem on the guide chamfer (82.03%, left),
cutting face (77.29%, middle) and flank face (64.64%, right)
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Fig. 10. Accuracy results of the six-class problem on the guide chamfer (70.59%, left),
cutting face (51.21%, middle) and flank face (59.42%, right)

Fig. 11. Accuracy result of
the final network on the six-
class problem

Due to the different cutting positions, wear can
reflect differently and thus, allowing more mistakes
to occur. The results with three specific networks
are more precise than with one general network,
i.e. a differentiation of the cutting positions would
result in an increase of accuracy of up to 5% for six
classes. For better results, however, more images of
the less frequently occurring classes are needed - and
for the general network - also an equal distribution
of cutting positions. This could further optimize the
results of the network, thereby reducing effort and
improving performance.

6 Conclusion

In conclusion, we have successfully implemented a Mask R-CNN model to classify
wear on images of tool cutting edges of solid carbide mills and drills. In total 35
neural networks were trained on 5,577 labeled images to achieve an accuracy of
55.42% up to 82.03%. The detection of overlapping wear types is a significant
improvement to existing approaches. For accurate results, first each tool cutting
position was trained with a separate network, which was specially configured for
the properties of this region. Second, a single model containing all positions was
trained to build one comprehensive industrial solution.

For further improvements, the output of the Mask R-CNN can be optimized
using machine learning methods such as Support Vector Machines (SVMs) or
Decision Trees. By the use of the output masks, it is also possible to calculate
the size of the detected wear. In conclusion, our solution can be adapted to
various applications in industry. Generally speaking, it can be considered as a
foundation for further research and product development.
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Abstract. Forecasting the weather is a great scientific challenge. Physics-
based, numerical weather prediction (NWP) models have been developed
for decades by large research teams and the accuracy of forecasts has
been steadily increased. Yet, recently, more and more data-driven machine
learning approaches to weather forecasting are being developed. In this
contribution we aim to develop an approach that combines the advantages
of both methodologies, that is, we develop a deep learning model to pre-
dict air temperature that is trained both onNWPmodels and localweather
data. We evaluate the approach for 249 weather station sites in Switzerland
and find that the model outperfoms the NWP models on short time-scales
and in some geographically distinct regions of Switzerland.

Keywords: Weather forecasting · Deep learning · Hybrid modeling

1 Introduction

To forecast the weather is a long-standing scientific challenge. Also, accurate
weather forecasts have great economic impact and mitigate costs to lives and
assets in the case of high-impact weather.

Our weather is produced by a physical atmospheric system with complex
dynamics. The usual metereological models used in numerical weather predic-
tion (NWP) are based on modeling the atmospheric dynamics and atmosphere-
land-sea couplings. The simulation of these models, initialized by a wealth of
measured and inferred data, then allows to forecast various parameters such as
air temperature or precipitation. In recent years and decades, the models and
simulation techniques have been developed to the point where they allow a fairly
accurate weather forecast for up to 10 days.

Despite these successes of the common meteorological models, more and more
work is recently being undertaken that aims to produce weather forecasts using a
machine learning (ML) approach. It is hoped that this further improves weather
forecasting, especially in terms of fast and accurate spatio-temporal resolution.
Such forecasting on a relatively short time-scale is also called nowcasting.

Instead of aiming to replace the elaborate physical models completely by ML
approaches, we propose in this contribution a hybrid approach, combining the
c© Springer Nature Switzerland AG 2020
F.-P. Schilling and T. Stadelmann (Eds.): ANNPR 2020, LNAI 12294, pp. 235–246, 2020.
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NWP models with a deep learning (DL) approach. We believe this combines the
advantages of NWP models such as an accurate representation of atmospheric
physics and a global approach to weather forecasting with the advantages of
data-driven ML approaches such as fast and comprehensive local data analysis.

Our approach develops a DL model which is trained on local measurement
data of weather stations and the corresponding forecasts of the NWP models
plus local past weather data. The main contributions of this work can be sum-
marised as follows: 1. We analyze the performance of the main NWP models
for Switzerland in regard to forecast accuracy of air temperature at 249 weather
station sites, 2. We design a DL model that learns to make local air temper-
ature forecasts based on the performance of the NWP models and additional
local data. As we will discuss in more detail, the results indicate that our app-
roach allows to generate improved forecasts on short time-scales and for some
geographically distinct regions of Switzerland.

The rest of the work is structured as follows: Next, we discuss the background
and related work. In Sect. 3 we describe the data situation and the NWP models
used. In Sect. 4 we describe the technical details of our approach. In Sect. 5 we
present the results of experiments with the model on Swiss weather data. In
Sect. 6 we conclude with a discussion of our approach and results.

2 Background and Related Work

Weather prediction has a long and successful history. In numerical weather pre-
diction (NWP) the methodology usually centers on modeling the physics of the
atmosphere and taking samples from numerical simulations of these models to
generate forecasts [1,2]. The approach essentially consists in modeling the physics
of the atmosphere and it couplings e.g. to sea and land, in model initialization
schemes, and running large simulations on super-computing facilities. Ensem-
ble modeling allows for an estimate of the uncertainty of forecasts. Advanced
computational techniques are used in order to run simulations of models. The
current state of the art in numerical weather prediction is reviewed by Bauer
et al. [3]. The NWP models are developed at large research centers such as the
European Centre for Medium-Range Weather Forecasts (ECMWF). We will also
use ECMWF models in this work (see Table 1), but refrain from explaining these
models in more detail as this does not constitute the focus of this contribution.

In recent years there have been more and more approaches to weather fore-
casting with ML models. These models sometimes try to predict a number of
parameters [4,5], as NWP models, but often the focus is on certain parameters,
e.g. on precipitation forecasts [7,8]. Also, some authors devise a hybrid app-
roach, by combining different models or modeling strategies, where others rely
on a straight ML or DL modeling approach. Our approach is in the spirit of
Reichstein et al. [6] where the authors argue for hybrid modeling strategies for
the earth sciences, combining physical models with ML approaches.

Some work on weather forecasting with DL methods we would like to men-
tion specifically: Grover et al. [4] develop a hybrid approach where they combine
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machine learning algorithms locally trained on key weather variables with a deep
learning model that models the joint statistics of the variables and a statistical
method for spatial interpolation. The model predicts wind, temperature, pres-
sure and dew point for weather station locations in the US and in some cases
outperforms the NOAA (National Oceanic and Atmospheric Administration)
models. Weyn et al. develop a convolutional neural network (CNN) approach to
model the atmospheric state [5]. Xingjian et al. develop a convolutional LSTM
model for precipitation nowcasting and outperfom an operational precipitation
forecasting algorithm using radar map data [7]. Hernández et al. use an autoen-
coder and FNN (feedforward neural network) to forecast accumulated daily pre-
cipitation for a meteorological station in Colombia [8]. The cited work shows
that the main DL models such as FNN, CNN, conv-LSTM, etc. are currently
being explored for weather forecasting tasks.

3 Description of Data and Weather Prediction Models

In order to build and evaluate our approach we use weather data collected by
weather stations and historic weather forecast data generated by some of the
main NWP models for Europe.

In regard to the measurement data we selected a number of key weather
parameters and collected these for 249 weather stations locations in Switzerland
for the time period 1990–2020. In this contribution we however only consider the
mean temperature 2 m above ground in 1 h frequency. The data was collected by
MeteoSwiss (Swiss Federal Institute of Meteorology and Climatology) weather
stations and provided by Meteomatics, a private weather data provider.1

The forecast data was collected for the NWP models listed in Table 1 for the
time period 2019-09-17 to 2020-03-24. These models constitute some of the main
NWP models for Europe. Some regional models such as COSMO are however
missing.

We analysed the performance of the NWP models by the mean squared error
(MSE) of their forecasts per forecast horizon for the 249 weather station sites
for the air temperature 2 m above ground. Figure 1 shows an example for the
location Wädenswil, Switzerland. We can see that, as expected, the predictions
become worse with growing forecast horizon.

We aim to beat these models or the best of these models in accuracy. However,
what is the best model for a given time and location? At some point in time
t it is not a priori clear which model will perform best for the next hours and
days. We therefore constructed a benchmark model in the following way: given
a location and some point in time we determine the model that has performed
best in the past 60 h. The forecasts of that model will be picked as comparison
to the forecasts made by our own model for the prediction made at time t.
This procedure is repeated for every location and point in time. In Fig. 1 the
thereby generated benchmark predictions, averaged over the entire time-period,
are shown, yielding the lowest prediction errors compared to the original models.

1 Meteomatics, https://www.meteomatics.com. Last accessed June 2020.

https://www.meteomatics.com
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Table 1. NWP models used in the work.

Short name Description

cmc-gem Global Environmental Multiscale model operated by the Canadian
Meteorological Center

ecmwf-ifs The European Center for Medium-Range Weather Forecasts’ (ECMWF)
Integrated Forecasting System (IFS). Atmospheric global circulation model
used for medium-range forecasts

ecmwf-ens Ensemble Prediction System (EPS) by ECMWF

ecmwf-mms Long-range seasonal forecast by ECMWF

ecmwf-vareps Long-range ensemble forecast by ECMWF

knmi-hirlam High Resolution Limited Area Model from the Royal Netherlands
Meteorological Institute.

mf-arome Regional model by Meteo France

mix Mixture model combining different models designed by Meteomatics

mm-swiss1k High-resolution model for Switzerland designed by Meteomatics

ncep-gfs Global Forecasting System by the National Centers for Environmental
Prediction (NCEP)

ncep-gfs-ens Ensemble model of Global Forecasting System by NCEP

ukmo-euro4 European model by the UK MetOffice

Fig. 1. MSE of the NWP model predictions of the air temperature 2 m above ground
for the location Wädenswil, Switzerland for different forecast horizons. The lowest
line indicates a benchmark model. Data considered for the time-period 2019-09-17 to
2020-03-24.
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4 Method

The main idea is to train locally, i.e., at each selected weather station location,
a DL model that takes as input time-series forecast data generated by the NWP
models and the measurement data at that site. There are thus several time series,
one for the measurements and several for the NWP models, which we collect in
one feature time series vector. The target is the forecast h steps into the future
which is then compared to the actual, measured values. That is, for each location
where data is available (the site of a weather station), the model aims to close
the gap between forecasted values and actually recorded values by training the
model accordingly on the historic data.

Formally, let M(t) denote the measured value at time t and let F (i)
h (t) denote

the prediction made by model i at time t for time t + h In other words, F (i)
h (t)

is an estimate of M(t + h). In this contribution, we only consider the air tem-
perature 2 m above ground as value. Because M is available on an hourly basis,
but forecasts are available on a 3 h basis only, we split M into 3 time series with
a 1 h lag relative to each other and add these new time series to the feature
vector. Given a forecast horizon h, we then construct for every time t the target
Yh(t) =

(
M(t + h)

)
and the input or feature vector

X(t) =

⎛
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We further transform, as the time series is not stationary, X(t) and Y (t) by
subtracting M(t) from each value, yielding Yh(t) =

(
M(t + h) − M(t)

)
and

X(t) =
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Finally, we are using X(t), · · · ,X(t − l), with look back period l = 20, for
predicting Y (t). The value for l seems reasonable to us, amounting to a 60 h look
back window, but we did not investigate that parameter value further.

The described data preparation was then carried out for each location.
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4.1 Model

With relatively small amount of data (ca. 1000 time steps), a small model with
one GRU (Gated Recurrent Unit) layer with 2 nodes and a subsequent dense
layer seemed appropriate. Larger models quickly overfitted. However we did not
yet look systematically into this matter.

4.2 Benchmark

We defined the benchmark as the prediction of the NWP model which performed
best during the past 20 time steps (the same time window with a look back period
l = 20) corresponding to 60 h. Formally, we have

bench(t) = F
(i)
h (t), where i = arg min

i

∑20

j=0
(F (i)

h (t − j) − M(t − j))2

4.3 Training

Data was split for cross validation using the last 10% of the data for testing and
the rest for training.

A model was trained using each possible combination of the following param-
eters:

– Forecast Horizon: 3 h, 6 h, 12 h, 18 h, 24 h
– Station: 1 of 249
– Look back: 20
– Weather parameter: hourly mean temperature 2 m above ground

This results in 5 · 249 = 1245 models. Each model was trained for 1000 epochs.

4.4 Implementation

All computation was done using python3.8 on linux. Models were built, trained
and evaluated on an NVIDIA RTX 2060 GPU using Tensorflow 2.1. We used
Tensorflow’s standard implementation of the ‘Adam’ optimizer and the mean
squared error (MSE) loss function.

4.5 Evaluation

For each time t, the predicted values were evaluated against the benchmark
model predictions. The error (MSE) was computed for the testing and training
sets for both the newly trained models and the benchmark model for every
station s ∈ S, resulting in msetrain(s),msetest(s), benchtrain(s), benchtest(s).
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For each station we can then build the differences msetrain(s)−benchtrain(s)
and msetest(s) − benchtest(s). If the difference is smaller than 0, the new model
is better than the benchmark for the given station.

5 Results

The performance of the new model was assessed by looking at the difference
of the prediction error to the benchmark error. The error used was the mean
squared error (MSE) either over the training period or the testing period. Here,
we focus on the results for the testing set.

5.1 Nowcasting and Geographic Differences

We evaluated the model for 249 weather station sites in Switzerland. We note
two main points: 1. The model performs consistently better for a forecast horizon
of 3 h, i.e., in the “nowcasting” range; 2. For larger forecast horizons the model
performs better for some locations or some regions of Switzerland but not for
whole country.

Figure 2 shows two examples for two distinct locations: in a) the model does
not perform better while in b) the model performs better over all forecast hori-
zons. As expected, the model performs better than the benchmark model on the
training set in both cases.

Figure 3 shows an overview of the errors per station for each forecast horizon
on a national scale. The model performs well for the 3 h forecast for most sta-
tions. Forecasts quality seems to deteriorate for increasing forecast horizon and
seem worst for 12 h forecast horizon. Interestingly, there seem to be clusters of
locations, e.g. in the canton of Valais, where the model seems to be consistently
better than the benchmark model. We therefore decided to look at the Valais
example in more detail. Figure 4 shows a zoomed in view on the stations in the
canton of Valais.

5.2 Evaluation Metrics and Error Distribution

We analyzed the differences between our model’s performance to the benchmark
model performance by looking at the mean and median differences of the MSE
of the predictions by our model and the benchmark model, further on referred
to as MBP and MEBP, respectively. Also, we assessed the ratio of stations that
performed better under the model than with the benchmark model. A station is
assumed to perform better than the benchmark, if the difference of MSE(model)
- MSE(benchmark) < 0. We performed this analysis on the level of the forecast
horizons once for all available stations and once for the Valais stations. Results
are summarized in Table 2. Both tables show that the majority of stations (81%
for Switzerland and 89% for Valais) have better forecasts with the new model
than with benchmark for the 3 h forecast. While the MPB seems to indicate
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(b) Turtmann, Canton of Valais

Fig. 2. Prediction errors of our model and benchmark model over forecast horizons for
a) Wädenswil and b) Turtmann.

better performance for all forecast horizons except the 12 h, the ratio of improved
models and the MEBP indicate that these values are probably caused by outliers.
In the case of the stations in Valais, there seems to be improvement for all forecast
horizons, although the improvement for 24 h forecast is very small.
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(a) 3 h (b) 6 h (c) 12 h

(d) 18 h (e) 24 h

Fig. 3. Geographic error distribution: Each dot corresponds to one station. Red indi-
cates station where model performed worse than the benchmark model while blue dots
indicate stations where the model was better. Darker shades indicate larger absolute
differences. (Color figure online)

(a) 3 h (b) 6 h (c) 12 h

(d) 18 h (e) 24 h

Fig. 4. Geographic error distribution in the canton of Valais. Coloring analogous to
Fig. 3.
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Table 2. FH: forecast horizon (h), R: Ratio of stations where the model is better
than benchmark model, MPB: Mean difference of MSE of the predictions model vs.
benchmark model, MEPB: median difference of MSE of the predictions model vs.
benchmark model.

FH MPB R MEPB

3 -2.01 0.81 -1.06

6 -0.54 0.45 0.20

12 0.73 0.36 0.70

18 -0.30 0.47 0.10

24 -0.54 0.51 -0.02

(a) Switzerland

FH MPB R MEPB

3 -2.37 0.89 -1.54

6 -1.09 0.61 -0.64

12 0.46 0.56 -0.22

18 -0.99 0.54 -0.34

24 -0.43 0.51 -0.02

(b) Valais

Figure 5 shows the distribution of the difference MSE(model)−MSE
(benchmark) for all stations and for the stations in the Valais. Furthermore,
the colors indicate the mean error of the station over all forecast horizons. We
can easily recognize that stations either perform consistently bad or well over all
forecast horizons on both geographic scales. That is, if a station benefits from
the model forecasts for any forecast horizon, it is likely to benefit for the other
forecast horizons as well. This seems to support the thesis that ML boosted
models can improve forecast quality in difficult to model locations while other
locations might not benefit from our approach.

(a) Switzerland (b) Valais

Fig. 5. MSE (model) and MSE (benchmark) distribution per forecast. Colors indicate
the mean difference over all forecast horizons. Note that these colors do not correspond
to the colorscale used on the map visualizations.

6 Discussion

We have developed in this contribution an approach that combines numerical
weather prediction (NWP) models with a machine learning (ML) approach.
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Specifically, we developed a deep learning (DL) model to predict air temper-
ature 2 m above ground that is trained both on NWM models and local weather
data and evaluated the approach for 249 weather station sites in Switzerland.
Our preliminary results show that the approach has potential: in the nowcasting
domain, i.e., for short time-scales, the model performs better almost everywhere,
for longer forecast horizons it seems that the approach could bring improvements
for some but not all regions. A new task may therefore be to identify the loca-
tions that could benefit from our approach, e.g., a classifier based on geographic
features might come into play.

We currently interpret the results as shown on the map (Fig. 3) as follows:
in mountainous regions such as the Valais, the potential for improvement seems
to be highest, because there you might find yourself in a special micro weather
situation, possibly created by the mountains that shield the region from the
coarse-meshed macro weather situation simulated by the NWP models. However,
this hypothesis should be examined more closely. Unfortunately, we have not
collected forecast data for all mountain valley regions in Switzerland such as the
Engadin.

We have not yet systematically analyzed the DL model in terms of architec-
ture and parameter tuning. Therefore we think that with further experiments
and analyses of the model substantial improvements are still possible.

In future work we will work further on the following approaches: 1. To forecast
further parameters, for example to predict precipitation, 2. To use data from
neighboring stations to forecast the weather at a particular station and 3. Collect
more data, e.g. provided by small weather stations at local farmers, and develop
the model further.

We believe that the blend of NWP models and ML models has great potential
and will continue to find its way into the science of weather forecasting.

Acknowledgment. This work was supported by Innosuisse grant 26301.1 IP-ICT and
Hydrolina Sarl.
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Abstract. Deep excavations are today mainly designed by manually
optimising the wall’s geometry, stiffness and strut or anchor layout. In
order to better automate this process for sustained excavations, we are
exploring the possibility of approximating key values using a machine
learning (ML) model instead of calculating them with time-consuming
numerical simulations. After demonstrating in our previous work that
this approach works for simple use cases, we show in this paper that
this method can be enhanced to adapt to complex real-world supported
excavations. We have improved our ML model compared to our previ-
ous work by using a convolutional neural network (CNN) model, coding
the excavation configuration as a set of layers of fixed height containing
the soil parameters as well as the geometry of the walls and struts. The
system is trained and evaluated on a set of synthetically generated situa-
tions using numerical simulation software. To validate this approach, we
also compare our results to a set of 15 real-world situations in a t-SNE.
Using our improved CNN model we could show that applying machine
learning to predict the output of numerical simulation in the domain of
geotechnical engineering not only works in simple cases but also in more
complex, real-world situations.

Keywords: Numerical simulation · Geotechnical engineering

1 Introduction

A common problem in geotechnical engineering is to evaluate the stability of
a given excavation as well as its influence in terms of displacements on the
neighbouring structures. In our case, we want to limit the settlement, the wall
deviation as well as the wall deflection while ensuring that the excavation will
not collapse. Today this task is often realized with the help of finite element
numerical simulations, which can be time-consuming. As a result, only a few
manually designed excavation configurations can be validated by numerical sim-
ulations. However, if we want to further automate the process of defining the
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most cost-effective excavation configuration, we need to evaluate hundreds - if
not thousands - of different configurations and ensure that they respect the
desired safety and displacement standards.

In this work, we explore, based on the previous work [4], the possibility
to predict the key results of a numerical simulation for supported excavations
using a machine learning approach. Our main goal is to show that the results
previously achieved with simple excavation configurations can be reproduced
using more complex, real life-like excavation configurations. Instead of predicting
the outcome of the complete numerical simulation, we focus on 5 key values that
indicate the viability of a solution in terms of stability and displacements.

Our work is based on the numerical simulation software ZSwalls [1]. The
latter performs a 2D analysis of retaining walls for deep excavations using the
nonlinear finite element kernel of the ZSOIL software [2], which has proven to
be effective in predicting the behaviour of large excavations in urban areas [3,8].

Figure 1 shows an example of the input parameters of the software and Fig. 2
shows the results of a simulation.

Fig. 1. Problem description

As our goal is not to reproduce the full results of the numerical simulation,
but rather to estimate its behavior, we can greatly reduce the complexity of the
prediction problem. To determine if a configuration is viable or not we predict
only the following five key values:

– The convergence is a boolean value that determines if the retaining system is
stable or not, or basically if the finite element numerical simulation can find
an equilibrium.

– The maximum settlement (m) is the maximal vertical displacement at the
terrain level, behind the wall, at the end of the excavation.
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Fig. 2. Output of the simulation

– The maximum deviation (m) is the maximal horizontal displacement along
the wall, at the end of the excavation.

– The maximum and minimum moments (kNm) represent extreme values of
the bending moment along the wall. These internal forces allow structural
engineers to design the wall, i.e. determine the wall’s thickness and/or type.

Based on our previous work [4], we present a new and improved machine
learning model for this type of data which can handle complex excavation con-
figurations. This new machine learning model also includes a new way to encode
the complex physical simulation data used as input for the neural network.

2 Methods

In recent years various machine learning techniques have been used in the domain
of numerical simulations. While some go as far as completely replacing the
numerical simulations with a machine learning model [5], others use machine
learning to speed up parts of the numerical calculations [11]. In some domains,
such as industrial systems or fluid dynamics systems, similar ideas to ours of
using machine learning approximations as the objective functions of optimiza-
tions methods have also been explored [7,9]. In the same vein as those other
works, we described in [4] the possibility of using machine learning approaches
to predict the outcome of a numerical simulation for unsupported excavations.
The previous work showed the potential of this approach when used on simple
excavations. We obtained good results for the binary convergence value, as well
as errors between 1 to 5% for the 3 quantities of interest (deviation, settlement
and absolute bending moment). The used metric was based on the mean rela-
tive error, truncated for very small values. A simple 3 layer multilayer perceptron
(MLP) model with 30/20/10 neurons, replicated for all 4 values, has been used.
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The dataset was limited to very simple situations, which have limited practical
use in the real world. Indeed, unsupported excavations are only used in prac-
tice for small depths, while anchors and/or struts are usually needed to support
deep excavations. Based on this previous work we increased the complexity of
the evaluated situations, improved the model to handle the more complex cases
in the new dataset and split a predicted value (bending moment) in two for
better accuracy.

2.1 Data

After confirming in our previous work [4] that using machine learning is a promis-
ing approach for simple situations, we created a new database with more complex
scenarios. The database consists of synthetic cases which have been evaluated
using the numerical simulation software ZSwalls. Based on the advice of geotech-
nical engineers and real-life scenarios, we made the following changes to the
previous database:

– The support structure can have up to six struts
– The stratigraphy has up to five different soil types
– Addition of a potential groundwater table
– Deeper excavations (up to 25 m deep)
– Diaphragm walls (in addition to sheet-pile walls)

For each situation, an excavation height, a retaining structure and a soil
model are generated. Excavations with a height of 5 to 25 m are considered.
Each bearing structure consisted of either a sheet pile or a diaphragm wall
with a maximum height of twice the excavation height. The wall’s stiffness is
chosen out of a set of standardized sheet-pile or diaphragm walls. The struts are
distributed with an equal distance between 3 to 5 m along with the excavation
height. The distance between the top strut and the surface ranges between 1 to
3 m depending on the excavation height. The bottom 3.0 m are free of struts.
With a maximum excavation height of 25 m, a maximum amount of 7 struts can
be present. In 25% of the situations, a buttress with an unloading factor of 75
to 100% is included. Three otherwise similar situations with different prestress
forces in struts are generated.

Five soil types were defined (deposit, granular, cohesive, moraine and rock)
with individual ranges for each soil parameter: Young’s modulus, cohesion and
friction. The thickness of each layer was chosen following a normal distribution.
To generate realistic soil configurations, the soil type of each layer depends on the
type of the overlying soil layer. To build our dataset, we use ZSwalls as numerical
simulation software. ZSwalls does 2D deep excavation retaining wall analysis
based on the finite element method through the ZSOIL software, successfully
used to predict the behaviour of large excavations in urban environments [3,8].
We used almost the same output values of the simulation as our prediction
targets, with one notable change to our previous work. While the convergence,
settlement and deviation were kept, the moment was split into two distinct
values. We now predict the minimum and maximum moment.
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We simulated 20’000 excavations using ZSwalls, of which 14’548 (72.7%)
converge (the construction holds) and 5’450 (27.2%) do not (the constructions
breaks down). In addition to the synthetic cases, we defined a set of 15 real
cases, which were also simulated with ZSwalls, to have a better understanding
of the behaviour of the system in real-life scenarios. One of these real cases is
illustrated in Fig. 3, with all varying parameters depicted in yellow.

Fig. 3. Illustration of one real case, with varying parameters depicted in yellow

To better understand the high dimensional data of the different excavation
configurations, we decided to visualize the training and real-life data using t-
SNE [6], a machine learning algorithm which allows the visualization of high-
dimensional data in lower dimensions (in our case 2). Figure 4 shows a t-SNE
analysis (perplexity 30, learning rate 200, iterations 250) of the 15 real-life cases
compared to our simulated database. The results of the t-SNE analysis have
been supported by an additional PCA analysis not shown here.

We can observe that the real cases fall within the clusters of the training
database, but with some at the edges of those clusters which might indicate a
need for a more diverse database.

2.2 ML Model

In our previous work [4] a single layer of one soil type was supported. The move
to support multiple soil layers with different properties required a new way to
encode the information for the model as well as a new model. Moving away
from the previously used MLP model, an LSTM approach was first explored.
This implied to adapt the encoding of input data, especially for different soil
layers. The recurrence steps in the LSTM cells were expected to match with
the sequence of soil layers. Unfortunately, this approach yielded disappointing
results. We then opted for a CNN based model that ultimately achieved better
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Fig. 4. t-SNE of the training samples (converging (green, 1) and non converging (red,
0)) and the 15 real cases (blue, 2). On the left only the general parameters are consid-
ered and on the right only the soil layers (Color figure online)

results. We chose a CNN based model as CNNs are uniquely well adapted for
image data, and an excavation can be represented as a data structure similar
to an image. Because of this, instead of the previous fixed-sized inputs for the
model, we opted to describe the problem as a 1D array representing a cross-
section of the excavation.

We model the excavations to a depth of 75 m, with the maximum depth of
the excavation itself going to a maximum of 25 m but the wall being able to
go below that depth. The height of the modelled case is split into 90 layers.
The minimum resolution (or precision) of this model, which corresponds to the
maximum physical height of a layer, is about 0.83 m. Each layer contains the data
about the excavation at a specific depth, divided into 7 channels and consisting
of the following information:

– Young’s modulus of the soil layer
– Friction angle of the soil layer
– Cohesion of the soil layer
– Presence/absence of a strut with its pre-stress
– Presence/absence of water
– Presence/absence of the wall with its stiffness value
– Lack of ground (defining the depth of the excavation)

Additional information, such as the half-width, load, presence/absence of
buttress and the total height of excavation are input directly into the dense layer
of the network. We can see that the complexity and diversity of the situations
are greatly improved. There is no more limit in the number of soil layers or struts
applicable to a given excavation. Currently, we train one model for every value
we predict separately. Figure 5 shows the architecture of the CNN model used.

The model starts with 2 blocks of 2 1D Convolutions with dropout (0.2)
and average pooling. After extracting the features of the 1D input array we
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Fig. 5. Architecture of the CNN model used for the prediction

concatenate them with the additional information mentioned previously (half-
width, load, etc.) to then go through a dense layer with dropout (0.3) and do
the final prediction of the network with a single neuron dense layer. We use the
Adam optimizer with a learning rate of 0.0007.

3 Results

In this section, we present the results of our method in terms of accuracy. For
the binary convergence value, we measure the Area Under Receiver Operating
Characteristics (AUROC) which allows us to measure how well the model can
distinguish the two cases. For the four linear values, we use the following metric
(1):

Error =
|y − ypred|
k + |y| (1)

Here y is the output of the simulation, ypred is the predicted value of the
model and k is a fixed value detailed below. The goal of this metric is to measure
the relative error, while at the same time not giving too much weight to errors on
small values. For example, a deviation error of 1 cm on a deviation of 1 cm, while
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100% is not very important. Yet an error of 30 cm on a 30 cm total deviation,
also 100%, is a real problem. For both the settlement and deviation metric we
used k = 0.04 and for the maximum and minimum moment we used k = 200,
based on the feedback of domain experts.

For the binary convergence value, we get an AUROC value of 0.992 which
can be considered a very good result. The result for the other four values are
summarized in Table 1.

Table 1. Accuracy measures of our CNN model

Value Error Std. dev. Measure

Settlement [m] 5.7% 6.4% Metric (1) (k = 0.04)

Deviation [m] 8.3% 9.6% Metric (1) (k = 0.04)

Max moment [kNm] 6.8% 6.8% Metric (1) (k = 200)

Min moment [kNm] 6% 6.4% Metric (1) (k = 200)

(a) Settlement (b) Deviation

(c) Max moment (d) Min moment

Fig. 6. Scatter-plots prediction vs ground-truth on the 4 linear metrics
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In Table 1, we can observe that all four other values are predicted in a similar
accuracy range (5.7 to 8.3%). To better understand these results, we look at the
scatterplots for the four linear metrics. We can see the settlement (Fig. 6a) and
deviation (Fig. 6b) at the top and min (Fig. 6c) and max (Fig. 6c) at the bottom
of Fig. 6.

The dots in the scatterplot are coloured based on their density, which shows
that the ranges with most cases are also the ones that are best predicted. For
the binary convergence value, which is a classification problem, we can see the
confusion matrix and the AUROC in Fig. 7.

Fig. 7. Confusion matrix and AUROC of the binary classification value

Given the complexity of the new situations compared to the ones in [4], the
accuracy is overall very good for all 5 values we are predicting.

4 Discussion

Through this work, we were able to demonstrate that the results described in
[4] could be replicated in more complex, real life-like scenarios. We were able to
show that by encoding the input of the physics simulation and by using a CNN
machine learning model, the more complex scenarios could be predicted with an
error of below 10%, which is an acceptable error rate according to geotechnical
engineering domain experts, given the uncertainties the numerical simulations
work with.

In our work, we did not compare our approach with other AI techniques such
as KNN or random forest. However, in [7] it was shown that the neural network
approach is the most suitable for this type of problem.

In future work, we would like to increase the complexity of the predicted
situations even further, while at the same time exploring better models as well
as improve the quality and diversity of the training database, in particular in
regards to approaches like active learning [10]. A major part of our future work
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is also the use of the trained model as an objective function for optimisations,
for example using a genetic algorithm. A first version of the genetic algorithm
has already been used to create an internal prototype which allows optimising
real constructions in seconds instead of days.

In terms of network architectures, we want to explore the possibility and its
impact on the accuracy of having a single model that predicts all five values,
which would simplify the training and deployment of the model.

Acknowledgment. This publication is written in the framework of the Optisoil
project co-funded by the swiss Hasler Foundation.
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Abstract. Machine learning-based pattern recognition methods are about to rev-
olutionize the farming sector. For breeding and cultivation purposes, the identi-
fication of plant varieties is a particularly important problem that involves spe-
cific challenges for the different crop species. In this contribution, we consider
the problem of peach variety identification for which alternatives to DNA-based
analysis are being sought. While a traditional procedure would suggest using
manually designed shape descriptors as the basis for classification, the technical
developments of the last decade have opened up possibilities for fully automated
approaches, either based on 3D scanning technology or by employing deep learn-
ing methods for 2D image classification. In our feasibility study, we investigate
the potential of various machine learning approaches with a focus on the compar-
ison of methods based on 2D images and 3D scans. We provide and discuss first
results, paving the way for future use of the methods in the field.

Keywords: Peach variety identification · ML classification · 3D scans

1 Introduction

The identification of plant species and varieties has always been an important skill in
human culture and a driving factor for agricultural success. The diversity of crops is
important for resilient cultivation and ecosystems as well as healthy nutrition, but has
come under pressure, e.g. due to monoculture farming methods. Thus, various initiatives
aim to preserve the diversity of crops. For specific crops such as peaches or apples the
task of identifying varieties requires very specific expertise, and even experts can get
ambiguous results. Therefore, genetic identification has become a major tool for variety
identification [1]. However, DNA analysis takes time, is relatively expensive and is not
entirely unambiguous [2].

Obviously, machine learning methods offer an alternative for the identification of
crop varieties. It does not come as a surprise that the identification and classification of
different plant species has a long tradition in the literature of neural network applications
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and machine vision (e.g., [3, 4]). However, the identification of varieties within a species
is a difficult problem as subtle differences can point to relevant discriminating features
[5]. Given its spectacular success and development over the past few years, it is tempting
to use deep neural network (DNN) technology based on 2D images for this task [6].
Traditionally, however, for many crops manually calculated 3D shape descriptors have
been used by experts since relevant differentiating features of varieties seem to bemainly
encoded in the 3D structure of the plants or their seeds or stones respectively [7]. As the
advances in technology render an automated approach using 3D scanning feasible, some
authors have suggested using 3D scans in combination with targeted feature engineering
as a basis for crop identification, e.g. [8].

In this contribution, we present the first, to the best of our knowledge, study to inves-
tigate and compare the potential of 2D image-based and 3D scanning-based machine
learning approaches for identifying varieties of peaches. As with all crops, the identifi-
cation problem is of great importance for peach breeding. Peach varieties are expressed
in differences in the structure of the peach stones. The goal of the study is to pre-evaluate
the potential of different methods that can offer breeders a cheap and fast tool which can
complement, if not replace, DNA analysis. Based on the established literature in the field
of plant identification, we decided to focus on two different methodological lines. We
evaluated the performance of convolutional neural networks (CNN) based on 2D images
and we assessed several classification methods (support vector classifier SVC, random
forest classifier, linear discriminant analysis LDA, k-nearest neighbor classifier KNN)
in combination with 3D descriptors gained from a Fourier analysis of the 3D scans.

Finally, in regard to future practical usage in the field, we focus on “cheap”
equipment. Thus, spectral imaging technology was not considered.

2 Materials and Methods

2.1 Peach Sample Preparation, Data Acquisition and Preprocessing

A selection of eight representative varieties of peaches with a total of 190 different fruits
were used as the data basis for this study. After carefully cleaning and drying the stones
of the peaches, 3D scans and 2D images were taken, according to the protocols described
below.

2D Images and Imaging Protocol. For 2D images a commercially available camera
(Sony DSC-HX300) was used. Objects were placed in a light tent, always in the same
place. Pictures of a resolution of 5184 × 2920 pixels were taken with the same camera
and light settings. Every object was flipped in a repeatable manner resulting in 6 samples
per object. The images were further preprocessed in order to obtain centered 256 × 256
images. Each picture was cropped based on the weighted center of mass and then resized
to size 256 × 256 padded with edge pixels values in height. It was necessary as some
of the objects were much longer than wide. The aspect ratio of the images remained
unchanged.

3D Scanner and Scanning Protocol. For 3D scanning a commercially available scan-
ner (PT-M scanner from Isra Vision) was used. For scanning, objects were placed in
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the middle of a turning table. The scanner was set to turn the turntable automatically
16 times. After a full turn, the object was flipped around its longest axis and scanned
again using 16 turntable steps. The scans were automatically aligned by the software that
comes with the scanner. In case of gross errors (misalignments), the data were discarded
and the object was scanned again. The resulting scans were in a form of a collection of
meshed points in 3D space. They were exported in the STL format.

As the orientation in space of this representation is not identical for every scanned
object, each object was first shifted such that its center of gravity lied in the origin of
the 3D coordinate system. Then, it was rotated such that its principal rotation axes were
aligned with the axes of the coordinate system. For the first part, the center of gravity was
defined as the component-wise mean of every vector. In the next step, the components
of the inertia tensor were calculated (assuming the same weight for every point). The
inertia tensor is described by the symmetric matrix

I =
⎛
⎝
I11 I12 I13
I21 I22 I23
I31 I32 I33

⎞
⎠ (1)

with Il �=k = −∑
xlxk and I11 = ∑

(x22 + x23), I22 = ∑
(x21 + x23), I33 = ∑

(x22 + x21).
The data were rotated such that the principal axes of the inertia tensor, i.e. the

eigenvectors, align with the axes of the coordinate system (see Fig. 1). As the points
are not equally spaced, the alignments are not perfect and there can be some variation
between scans. Furthermore, since only the axes are aligned and the stones are not
symmetric, not all of the stones have the same orientation. Therefore, every object was
flipped once around every axis, such that 4 samples per scan were created (original and
rotated around the three axes). The data were then transformed from vectors to a spatial
grid with binary encoding cells, representing the surface of the stone. The resolution of
the grid was 0.1 mm.

The data basis that was used for the classification tasks is summarized in Table 1.
For the classes, i.e. peach varieties, an encoding scheme used by the breeder A. Schmid
was applied. Additionally, 3 varieties have specific names.

2.2 CNN Approach for 2D Images

Considering the small data set size, transfer learning based on a pretrained convolutional
net was used for the classification of the images [9]. We evaluated several image classi-
fication models, including InceptionV3, Resnet50, MobileNetV2, VGG16 and VGG19
as the convolutional base, all pretrained on the ImageNet dataset [10, 11]. Classification
with VGG16 model was the only successful approach. We experimented with adding 2
to 3 dense layers consisting of 128 up to 512 neurons with dropout ranging from 0.2 to
0.5 on top of the nontrainable convolutional base. Adam and SGD optimizers with cat-
egorical cross-entropy loss function and accuracy metrics were investigated. In the final
architecture, the VGG16 convolutional base was followed by global max pooling, 30%
dropout and two dense layers. The first dense layer consisted of 256 neurons with ReLU
activation function while the classifier on top of it was an 8-neuron dense layer with a
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Fig. 1. Projections of 3D scans onto each principal axis for two different varieties. In each row,
two different stones of the same variety are shown.

Table 1. Overview data basis.

Peach variety Number of stones Number of images Number of scans

146 25 150 100

303 25 150 100

929 22 132 84a

930 25 150 100

349 18 108 72

101 zephir 25 150 100

102 nectaross 25 150 100

103 sweet dream 25 150 100

Total 190 1140 756

(afor class 929 one stone had to be excluded from the scans due to damaged data).

softmax activation function. The final model was compiled with an SGD optimizer with
a learning rate of 0.001 and a momentum of 0.9. The target vector was one-hot encoded.
Training data were augmented with ImageDataGenerator.

For each training, 10% of the images were used as a test set, another 10% of the
remaining samples were used as a validation set and the rest was used as a training set.
Themodelwas trained for 100 epochswith an early stopping condition. The performance
of the model was assessed using 10-fold cross-validation with a stratified fold split.

The model was built using Python with TensorFlow2 and trained on a Tesla P100
GPU.
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2.3 Classification Methods for 3D Scans

We evaluated several different machine learning algorithms in combination with a fea-
ture selection procedure based on a 3D Fourier analysis. The evaluated approaches are
Linear Discriminant Analysis (LDA), Support Vector Classifier (SVC), Random Forest
Classifier (RF) and k-Nearest Neighbors Classifier (KNN). All these approaches were
applied after a preceding feature engineering step based on 3D Fourier coefficients. To
this end, the spatial grid of the scans was transformed using a fast Fourier transform.
From the obtained Fourier domain, the (50, 50, 50) ‘corners’ of the Fourier spectrum
were considered. Since the Fourier spectrum exhibits point symmetry and thus redun-
dancy, only the 4 lower corners were taken into account, the imaginary parts of the
coefficients were discarded and only the real parts were used. Important features were
then selected using ANOVA by keeping only the frequencies with a p-value below the
0.9999 quantile of all p-values. In this way, 100 frequencies were selected that were then
used as a feature vector. Before training the classifiers, each component was scaled by
the z-transform (centered around 0, with std = 1). Only the training data were used for
fitting the scaler.

Hyperparameters of the models were tuned with GridSearchCV. For final classifica-
tionwe used LDAwith singular value decomposition solver, RFwithGini impurity crite-
rion andKNNwith 5 nearest neighbors andEuclidean distance. TheSVCmodel achieved
the highest classification accuracy with radial basis function kernel type, regularization
parameter increased from 1 to 40 and kernel coefficient gamma set to 0.01.

The models were built using Python with scikit-learn and trained on an Intel Xeon-
based cluster computing node. They were evaluated using 10-fold cross-validation with
a stratified fold split.

3 Results

The results for all the methods based on 10-fold cross-validation are summarized in
Table 2. Generally, the accuracy of the best methods is around 90% with the best 3D-
based methods slightly above (92.2% for LDA and 91.9% for SVM) and the 2D CNN
method slightly below this value (89.2%). In comparison, the accuracy of the RF and
KNN models is significantly lower (84.1% and 83.1% respectively).

Table 2. Accuracy of different methods based on 10-fold cross-validation

Method Accuracy (mean ± stdv)

2D CNN 0.892 ± 0.036

3D SVC 0.919 ± 0.052

3D LDA 0.922 ± 0.054

3D Random Forest 0.841 ± 0.095

3D KNN 0.831 ± 0.084
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To further investigate and understand these results we take a look at the normalized
confusion matrices, averaged over the 10-fold cross-validation (Fig. 2: 2D-based CNN;
Fig. 3: 3D-based methods)

Fig. 2. CNNnormalized confusionmatrix averaged over all 10 folds of the k-fold cross-validation
with a stratified fold split.

For the 2D-based CNN approach, the main difficulty seems to occur for the dis-
crimination of the variety nectaross from zephyr as in average 27% of images of the
nectaross class are classified as zephyr (Fig. 2). This problem seems to be much less
pronounced for the discrimination based on 3D scanning (Fig. 3). In particular, in the
case of SVC, small misclassification errors seem to occur for various classes in a rather
arbitrary fashion, not hinting at a specific problem of two classes. A possible explana-
tion for the problem of discriminating nectaross from zephyr in the 2D case is revealed
when looking at the actual stones and their respective images (Fig. 4). The stones of
the two varieties exhibit a similar structure. They mainly differ in size. The size infor-
mation is, however, lost for the 2D images as they are automatically rescaled. In turn,
the analysis of the Fourier-based feature vectors in the 3D approach shows that the low
frequencies describing the coarse-grained structure of the stones play an important role
for the classification. Hence, size is a feature that is definitely exploited in the 3D-based
approach.
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Fig. 3. Normalized confusion matrices for the 3D-based machine learning methods (from top left
to bottom right: LDA, SVC, RF, KNN). Each matrix is averaged over all 10 folds of the k-fold
cross-validation with a stratified fold split.

Fig. 4. Example of the 2 sorts that are misclassified most frequently. On the left nectaross, on the
right zephyr.

4 Conclusions and Future Work

Species and variety identification is an important problem in crop breeding, which can
potentially benefit greatly frommachine learning-based pattern recognitionmethods.We
investigated several machine learning approaches for peach variety identification based
on 2D images and 3D scans of peach stones. The goal of the study was to learn more
about the potential, strengths and weaknesses of different approaches for this particular
problem. Our findings can be summarized as follows.

Despite a relatively small data basis with 190 peach stones, a 2D-based CNN app-
roach looks promising. In fact, when looking at the images, an accuracy of nearly 90%
seems surprising and speaks for the potential of themethod. On the one hand, many stone
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sorts differ in color which is beneficial for this classification method. On the other hand,
the method does not make use of size information of the stones, which can be considered
a drawback. However, with a larger data basis and perhaps a different imaging protocol,
even better results can be expected.

Among the approaches based on 3D scans of the stones, LDA and SVCwere themost
successful ones with an accuracy even larger than 90%. We used an automated feature
engineering preprocessing based on 3D Fourier analysis and an ANOVA-based feature
selection, resulting in feature vectors that mainly describe the coarse-grained structure
of the stones. This automated preprocessing can be challenged and leaves room for
improvement. An alternative could be offered by volumetric CNN directly applied on
the 3D scans. The first attempt with this idea, however, has not yet shown conclusive
results and has not been included in this study.

In conclusion, both 2D and 3D based methods showed promising accuracies on the
basis of a limited data set. We are confident that an accuracy of 95% can be achieved.
This will provide a basis for stable applications in the field, offering an alternative to
DNA analysis. As 2D and 3D methods exploit to some extent different features for
the classification, a combined approach could be beneficial. From an overall method-
ological perspective, the case of peach stone classification could thus be an ideal play-
ground for combining 2D and 3D images. Further investigations are ongoing. Following
approaches are taken into consideration: volumetric CNNs, multi-view CNNs aggregat-
ing 2D projections of the 3D scans, combination of the two [12] or a combination with
2D images.

Acknowledgements. We thank Doris Berchtold and Matteo Delucchi for useful hints and their
support. This work was supported by the Innosuisse Innocheck Nr 33954.1 INNO-LS.

References

1. Arús, P., Verde, I., Sosinski, B., Zhebentyayeva, T., Abott, A.G.: The peach genome. Tree
Genet. Genomes 8, 531–547 (2012). https://doi.org/10.1007/s11295-012-0493-8

2. Singh, B.D., Singh, A.K.:Marker-Assisted Plant Breeding: Principles and Practices. Springer,
New Delhi (2015). https://doi.org/10.1007/978-81-322-2316-0

3. Wäldchen, J., Mäder, P.: Plant species identification using computer vision techniques: a
systematic literature review. Arch. Comput. Methods Eng. 25(2), 507–543 (2017). https://
doi.org/10.1007/s11831-016-9206-z

4. Gan, Y.Y., Hou, C.S., Zhou, T., Xu, S.F.: Plant identification based on artificial intelligence.
Adv. Mater. Res. 255–266, 2286–2290 (2011)

5. Wäldchen, J., Rzanny, M., Seeland, M., Mäder, P.: Automated plant species identification
– trends and future directions. PLoS Comput. Biol. 14(4), e1005993 (2018)

6. Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E., Joly, A.: Going deeper in the
automated identification of Herbarium specimens. BMC Evol. Biol. 17, 181 (2017)

7. Rivera, A., Roselló, S., Casanas, F.: Seed curvature as a usefulmarker to transfermorphologic,
agronomic, chemical and sensory traits from Ganxet common bean (Phaseolus vulgaris L.).
Sci. Hortic. 197, 476–482 (2015)

8. Karasik, A., Rahimi, O., David, M., Weiss, E., Drori, E.: Developement of a 3D seed mor-
phological tool for grapevine variety identification, and its comparison with SSR analysis.
Sci. Rep. 8, 6545 (2018)

https://doi.org/10.1007/s11295-012-0493-8
https://doi.org/10.1007/978-81-322-2316-0
https://doi.org/10.1007/s11831-016-9206-z


Going for 2D or 3D? Investigating Various Machine Learning Approaches 265

9. Soekhoe, D., van der Putten, P., Plaat, A.: On the impact of data set size in transfer learning
using deep neural networks. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds.)
IDA 2016. LNCS, vol. 9897, pp. 50–60. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46349-0_5

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv:1512.
03385v1 (2015)

12. Hedge, V., Zadeh, R.: FusionNet: 3D object classification using multiple data representations.
arXiv:1607.05695v3 (2016)

https://doi.org/10.1007/978-3-319-46349-0_5
http://arxiv.org/abs/1512.03385v1
http://arxiv.org/abs/1607.05695v3


A Transfer Learning End-to-End Arabic
Text-To-Speech (TTS) Deep Architecture

Fady K. Fahmy(B) , Mahmoud I. Khalil , and Hazem M. Abbas

Department of Computer and Systems Engineering,
Ain Shams University, Cairo, Egypt

fadykhalaf01@gmail.com, {mahmoud.khalil,hazem.abbas}@eng.asu.edu.eg

Abstract. Speech synthesis is the artificial production of human speech.
A typical text-to-speech system converts a language text into a wave-
form. There exist many English TTS systems that produce mature, nat-
ural, and human-like speech synthesizers. In contrast, other languages,
including Arabic, have not been considered until recently. Existing Ara-
bic speech synthesis solutions are slow, of low quality, and the naturalness
of synthesized speech is inferior to the English synthesizers. They also
lack essential speech key factors such as intonation, stress, and rhythm.
Different works were proposed to solve those issues, including the use
of concatenative methods such as unit selection or parametric methods.
However, they required a lot of laborious work and domain expertise.
Another reason for such poor performance of Arabic speech synthesiz-
ers is the lack of speech corpora, unlike English that has many publicly
available corpora (LjSpeech, https://keithito.com/LJ-Speech-Dataset/.,
Blizzard 2012, http://www.cstr.ed.ac.uk/projects/blizzard/2012/phase
one/.) and audiobooks. This work describes how to generate high quality,
natural, and human-like Arabic speech using an end-to-end neural deep
network architecture. This work uses just 〈text, audio〉 pairs with a rel-
atively small amount of recorded audio samples with a total of 2.41 h. It
illustrates how to use English character embedding despite using diacritic
Arabic characters as input and how to preprocess these audio samples
to achieve the best results.

Keywords: Tacotron 2 · WaveGlow · Arabic text-to-speech · Speech
synthesis · Deep learning · Neural networks

1 Introduction

Speech synthesis has been a challenging task for decades. Conventional text-
to-speech (TTS) systems are usually made up of several components connected
through a pipeline that includes text analysis frontends, acoustic models, and
audio synthesis models. Building each component in a conventional TTS system
often requires comprehensive domain expertise and a lot of laborious work like
feature engineering and annotation. Besides, errors generated by each component
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propagate to later stages, making it hard to identify the source of the final
perceived error.

Researchers have adopted the use of concatenative speech synthesis [1,2]
for years. The idea is based on selecting and concatenating units (phonemes)
from a large database to generate intelligible speech. Such units could be any
of the following: phones1 diphones2 half-phones, syllables, morphemes, words,
phrases, or sentences. Generally, the longer the unit, the larger the size of the
database that must cover the unit with different prosodies. The drawbacks of
concatenative methods for speech synthesis are (a) they need massive databases
for large unit size, (b) noise captured while recording units may degrade the
quality of synthesized speech since units recorded are represented as it is while
synthesizing, and finally (c) the massive amount of labeling and recording.

Statistical parametric speech synthesis based on Hidden Markov Model
(HMM) [3,4] showed an increase in adoption rate and popularity over time. It
solved a lot of problems of concatenative methods such as (a) modeling prosodic
variation by modifying HMM parameters, thus solving the problem of large
databases, (b) it has proved to have fewer word error rates which lead to better
understandably, and (c) it is more robust because the pre-recorded units in unit
selection synthesis could be recorded in different environment adhering different
noise profiles. The drawbacks of HMM-based synthesis may include (a) requir-
ing a lot of feature engineering and domain expertise, and (b) generated speech
sounds more robotic than speech generated by unit selection speech synthesis.

Deep neural network architectures have proved extraordinary efficient at
learning the inherent features of data. WaveNet [5] is a generative model for
generating waveforms based on PixelCNN [6]. It has outperformed production
level parametric methods in terms of naturalness. Still, it has two significant
drawbacks: (a) it requires conditioning on linguistic features from an existing
TTS system, so it is not a fully end-to-end system, and (b) it synthesizes speech
very slowly due to the auto-regressive nature of the architecture. Deep voice [7]
is another example of deep neural architectures. It has proven high performance,
production-level quality, and real-time synthesis. It consists of five stages, namely
a segmentation model for locating phoneme boundaries, a grapheme-tophoneme
conversion model, a phoneme duration, a fundamental frequency prediction
model, and an audio synthesis model. Deep Voice is a step towards a genuinely
end-to-end neural network architecture.

With the introduction of end-to-end architectures such as Tacotron [8],
much laborious work to synthesize speech is alleviated. Such examples for
laborious work include feature engineering, and human annotation (although
a slight human annotation is needed to prepare the 〈text, audio〉 pairs for
training). Tacotron is a generative text-to-speech model based on a seq-to-seq
model with attention mechanism [9] taking characters as input and producing

1 Distinct speech sound or gesture, regardless of whether the exact sound is critical to
the meanings of words.

2 Consists of two connected half phones that start in the middle of the first phone and
end in the middle of the second phone.
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audio waveforms. Tacotron uses content-based attention [10], where it concate-
nates context vector with attention RNN cell output to provide an input to
decoder RNNs. Tacotron 2 [11] is a natural evolution of Tacotron. It offers a uni-
fied purely neural network approach and eliminates the non-neural network parts
used previously by Tacotron, such as the Griffen-Lim reconstruction algorithm
to synthesize speech. Tacotron 2 consists of two main components, (a) recurrent
seq-to-seq generative model with attention, and (b) a modified Wavenet acting
as a vocoder to synthesize speech signal. Tacotron 2 uses hybrid attention [12]
(both location-based and content-based attention).

This paper describes how to use a modified deep architecture from Tacotron
2 [11] to generate mel-spectrograms from Arabic diacritic text as an intermediate
feature representation followed by a WaveGlow architecture acting as a vocoder
to produce a high-quality Arabic speech. The proposed model is trained using a
published pre-trained Tacoron 2 English model using a dataset with a total of
2.41 h of recorded speech.

The rest of this paper is organized as follows: Sect. 2 presents a review of
related works in the Arabic TTS domain. Sect. 3 describes the proposed model
architecture, including the two main components, feature prediction network and
WaveGlow, while Sect. 4 introduces the training setup and procedures, issues
faced in training, and quantitative and qualitative analysis evaluation of the
results. Finally, the paper is concluded in Sect. 5.

2 Arabic TTS Works

Many works are covering Arabic text-to-speech synthesis to generate a good and
human-like speech. In [13], Y. A. El-Imam uses a set of sub-phonetic elements
as the synthesis units to allow synthesis of unlimited-vocabulary speech of good
quality. The input to the system is an Arabic diacritic spelling or simple numeric
expressions.

Abdel-Hamid Ossam et al. in [14], managed to improve the synthesized Ara-
bic speech using an HMM-based approach. They used a statistical model to
generate Arabic speech parameters such as spectrum, fundamental frequency
(F0), and phonemes duration. Then, the authors applied a multi-band excitation
model and used samples extracted from spectral envelop as spectral parameters.

Speech synthesis using diacritic text such as [15] has gained a lot of momen-
tum because there is a lack of Arabic diacritic database for speech synthesis. The
work discusses two methods to recognize appropriate diacritic marks for Arabic
text: a machine learning approach and a dictionary method. This work uses a
statistical parameter approach using non-uniform unit size for speech synthesis.
It employs variable-sized units, as it has proven to be more effective than using
fixed-size units such as phonemes and diphonemes. It partially solves some prob-
lems of classical statistical parameter methods. Such issues are speech quality,
articulatory effect, and discontinuity effect. This work aimed to build an Arabic
TTS system with the integration of diacritization system.
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Studying Arabic phonetics [16] for speech synthesis and corpus design is vital
to provide a corpus that has excellent coverage of phonetics and phonology. We
have used the corpus generated from [16] in the training phase of the spec-
trogram prediction network model. We have also used another technique in this
work to phonetize diacritic Arabic characters as part of training the spectrogram
prediction network.

The work [17], by Imene Zangar and Zied Mnasri, uses Deep neural networks
(DNN) for duration modeling for Arabic speech synthesis. In this work, the
authors compare duration modeling using Hidden Markov Model (HMM) and
duration modeling based on deep neural network of different architectures to
minimize the root mean square prediction error (RMSE). They concluded that
using DNN for modeling duration outperformed HMM-based modeling from the
HTS toolkit and the DNN-based modeling from the MERLIN toolkit.

3 Model Architecture

Unlike conventional methods for speech synthesis, end-to-end neural network
architectures not only alleviate the need for extensive domain expertise and
laborious feature engineering, but they also require minimal human annotation.
They can be conditioned for any language, gender, or sentiment. Conventional
TTS synthesizers consist of many stages, each trained separately. This can give
rise to making each component’s error cascade to later stages. End-to-end archi-
tectures are structured as a single component and thus can become more robust.

In this work, a slightly modified model that is described in [11] is adopted
where the Wavenet part is replaced with a flow-based implementation of Waveg-
low [18]. Hence, the proposed model shown in Fig. 1 consists of two components:

1. A sequence-to-sequence architecture spectrogram prediction network, with
attention which takes a diacritic Arabic text as input and predicts the corre-
sponding mel-spectrogram as output.

2. A flow-based implementation of WaveGlow which takes the mel-spectrograms
as input and generates a time-domain waveform of the input text.

There are many advantages of using mel-frequency spectrograms3 as an interme-
diate feature representation between spectrogram prediction network and Wave-
Glow. They include

(a) mel-spectrograms can be computed easily from time domain waveforms,
making it easy to train each of the two components separately.

(b) they are easier to train compared to waveforms as they are phase invariant
and thus training can be done using simple loss functions such as squared
loss.

3 A spectrogram is a visual representation of the spectrum of frequencies of a signal
as it varies with time.
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Fig. 1. Block diagram of the spectrogram prediction network with WaveGlow, it takes
diacritic Arabic characters as input and produces audio waveform as output [11].

(c) mel-frequency spectrograms are related to linear-frequency spectrograms.
One can obtain a mel-frequency spectrogram from a linear-frequency spec-
trogram by converting the frequency axis to log scale and the “colour” axis,
the amplitude, to decibels.

(d) Mel-frequency spectrograms use mel-frequency scale, they can emphasize
details on lower frequencies, which is essential for speech naturalness. It also
gives less attention to higher frequencies which are not critical for human
perception.

(e) It is straightforward for WaveGlow to be conditioned on mel-frequency spec-
trogram to generate a good quality speech.

3.1 Spectrogram Prediction Network

As shown in Fig. 1, the spectrogram prediction network is a sequence-to-sequence
architecture. It consists of an encoder that creates an internal representation of
the input signal, which is fed to the decoder to generate the predicted mel-
spectrogram. The encoder is made of three parts: character embedding, three
convolution layers, and bidirectional LSTM. It takes character sequence as input
and produces a hidden feature vector representation. The decoder is made of a
two-layer LSTM network, two-layer pre-net, five Conv-layer post-net, and lin-
ear progression. It consumes the hidden feature vector representation produced
by the encoder and generates the mel-spectrograms of given input characters.
Since the diacritic Arabic text is used as an input, a text phonitization block is
employed to transform the Arabic characters to another Unicode character set.
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The following block in the architecture is an embedding layer (512-dimensional
vector) which represents each character symbol numerically. The output of the
embedding layer is fed to three convolutional layers, each of 512 filters of dimen-
sion 5 × 1 to span five characters and model long-term contexts (N-gram). Each
convolutional layer is followed by batch normalization [19] and a ReLU activa-
tion [20]. Tensors produced by the convolutional blocks are fed to bi-directional
LSTM of 512 units (256 in each direction). Forward and backward results are
concatenated to generate encoded features to be supplied to the decoder.

Spectrogram prediction network uses a hybrid attention model described
in [12]. The reason why an attention mechanism is necessary for the spectrogram
prediction network is solving long sequence problems (long character sequence),
as it is hard for encoder-decoder architecture without attention to memorize
a very long input sequence. Accordingly, the performance of the architecture
without attention mechanism will eventually deteriorate with long sequences.
Attention mechanism solves the problem of long sequences by attending on a
part of the sequence (using attention weights) just like what human does when
trying to figure out a long sequence. As shown in Fig. 2. At each decoder step,
to form the context vector and update the attention weights attention uses the
following: (a) the projection of the previous hidden state of decoder RNN’s
network onto a fully connected layer, (b) the projection of the output of the
encoder data on a fully connected layer, and (c) the additive attention weights.
The context vector Ci is computed by multiplying the encoder outputs, hj , and
the attention weights, αij , as in Eq. 1

ci =
Tx∑

j=1

αijhj (1)

αij =
exp (eij)∑Tx

k=1 exp (eik)
(2)

eij = wT tanh (Wsi−1 + Vhi
+ b) (3)

where αij is attention weight, and eij is an energy function. W and V are
matrices, while w and b are vectors and they are all trainable parameters.

The output of the decoder layer is then fed to pre-net, which consists of
two fully connected layers of 256 hidden ReLU units, then passed through 2 uni-
directional LSTM of 1204 units. The concatenation of LSTM output and context
vector is projected to a linear transformation to predict mel-spectrogram, which
is passed to a five-layer post-net. A scaler (stop token) is calculated in parallel by
projecting concatenation of context vector with the decoder LSTM output and
passing them through a sigmoid activation to predict when to stop generating
speech at inference time. Mel-spectrograms are computed using 50 ms frame hub,
and a “han” window function.

All convolutional layers are regulated using dropout [21], while LSTM layers
are regulated using zoneout [22].
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Fig. 2. Hybrid attention mechanism used in spectrogram prediction network [12]

Fig. 3. Block diagram of WaveGlow Vocoder [18], it takes a spectrogram as input and
produces an audio waveform.

3.2 WaveGlow Vocoder

WaveGlow is a flow-based generative network that combines insights from glow
[23] and Wavenet. According to the authors of [18], it generates speech with
quality as good as the best open-source implementations of WaveNet. However,
it is much faster as it is not auto-regressive and could fully utilize GPUs. It
is trained alongside with the spectrogram prediction network using the original
mel-spectrograms as an input and the audio clips as the output. WaveGlow can
be easily conditioned on mel-spectrograms to generate high-quality waveforms.

The forward path, as shown in Fig. 3, takes a group of eight samples as a
vector as in [23], then passes the output into twelve steps of flow, each step
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consisting of 1 × 1 convolution followed by an affine coupling layer. The affine
coupling layer acts as an invertible neural network [24]. Half of the channels are
used as inputs, while the block, WN, can be any transformation. The coupling
layer preserves invertibility for the overall network. Invertible 1×1 convolution is
added before the affine layer to mix information between channels. The weights
W of the invertible convolution are initialized to be orthogonal4 and thus they
are also invertible.

ٌ

ِ َ ِ َ ْ ْلِ  َ  َ  َ

اَهُ َ  َ   ِ  ْ ِ َ  

{k l m t u1 n}

{E a l a} {H a dd i0}
{q A w l i0} {< a l b aa H i0 ^ a t i0}

{l a} {t a ^ I1 q} {f ii0} {k u0 ll i0}
{m a} {t a r aa h u0}

Fig. 4. Phonitization examples. The left side of the graph represents diacritic Arabic
words, while the right side represents the corresponding Unicode character symbols.

4 Experimental Results and Analysis

4.1 Training Setup

We have trained the Spectrogram prediction network on Nawar Halabi’s Ara-
bic Dataset5 [16], which contains about 2.41 h of Arabic speech, a total of 906
utterances, and 694556 frames. The dataset consists of 〈text, audio〉 pairs. The
input text is diacritic Arabic characters, while the output is a 16-bit 48 kHz
PCM audio clip is with a bit-rate of 768 kbps. Since the dataset is relatively
small, it is split into a 95% training set and a 5% validation set. The training
was executed on a supercomputing environment.6

The spectrogram prediction network was trained separately using diacritic
Arabic characters as input and original mel-spectrograms at the decoder side as
the target. Because of the small dataset size, we were not able to learn character
embedding, nor the attention between encoder and decoder perfectly. Also, the
quality of the generated speech was poor. As a result, we utilized transfer learning
from English by (a) transforming diacritic Arabic words into English characters
using an open-source phonitization algorithm,7 refer to Text Phonitization in
Fig. 1, phonitization examples at Fig. 4, (b) using a pre-trained English model8

4 Orthogonal matrix is a square matrix whose columns and rows are orthogonal unit
vectors.

5 http://en.arabicspeechcorpus.com/.
6 https://hpc.bibalex.org/.
7 https://github.com/nawarhalabi/Arabic-Phonetiser.
8 https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs VdZuJ86ZqA/view.

http://en.arabicspeechcorpus.com/
https://hpc.bibalex.org/
https://github.com/nawarhalabi/Arabic-Phonetiser
https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view
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with the learned English character embedding to be able to fully train the atten-
tion mechanism. The audio training clips have been down-sampled to 22050 Hz
in to employ the same audio parameters as those in the open-source implemen-
tation9 (trained on LJSpeech dataset) such as the hop length and the filter
length. Silence moments (below 60 dB) of each training sample were removed
using a frame size of 1024 and a hop size of 256, which greatly helped to align
the attention graph shown in Fig. 5.

Other training parameters are: a batch size of 8 on 2 GPUs, Adam opti-
mizer [25] with β1 = 0.9, β2 = 0.999, and ε = 10−6, a constant learning rate of
10−3, and L2 regularization with weight 10−6. A training epoch took, on average,
about 15 min while only about 2 s were needed to generate a waveform.

Fig. 5. Alignment graphs at different steps of training

4.2 Analysis

For quantitative analysis, both training and validation losses were assessed as
metrics. Simple mean square error loss (MSE) between predicted and target
mel-spectrograms was calculated.

For qualitative analysis, the attention alignment graph was used as a metric.
The Attention alignment graph is an indication of how the decoder is attend-
ing correctly to encoder input. Encoder reads input step-by-step and produces
status vectors. Decoder reads all status vectors and produces audio frames
step-by-step. A good alignment simply means: An “A” sound generated by the
decoder should be the result of focusing on the vector generated by the encoder
from reading “A” character. The diagonal line is the result when audio frames
are generated by focusing (paying attention) on the correct input characters.
9 https://github.com/NVIDIA/tacotron2.

https://github.com/NVIDIA/tacotron2
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Figure 5 shows that the spectrogram prediction network was continually improv-
ing in learning attention throughout the training process. It helped in eliminat-
ing some pronunciation errors as well as removing some pauses in the generated
speech. Our model started to pick up alignment after about 40 epochs of training.

Further qualitative analysis was carried out by using human ratings similar
to Amazon’s Mechanical Turk.10 We used a pre-trained model of WaveGlow11

to infer ten randomly selected samples of spoken sentences. Each sample is rated
by 26 raters on a scale from 1 to 5 with a step of 0.5 to calculate a subjective
mean opinion score (MOS) for audio naturalness. Each evaluation is conducted
independently from each other. Table 1 compares the proposed architecture with
other architectures samples from [26] such as concatenative methods with HMMs
and Tacotron with the Griffin-Lim algorithm as a synthesizer. Figure 6 shows the
detailed raters’ review for each of the test samples where each entry is the sum
of all 26 rates divided by the number of raters (26).

Table 1. MOS evaluation for different system architectures.

System Architecture MOS

Concatenative methods with HMMs 3.89

Tacotron 1 with Griffin-Lim algorithm 4.02

Tacotron 2 with WaveGlow (proposed) 4.21

0
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2

3

4

5

4.32 4.2 3.96 4.25 4.11 4.13 4.23 4.42 4.19
4.51

Sample
     1
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     2

Sample
     3
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     4

Sample
     5

Sample
     6
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     7

Sample
     8

Sample
     9

Sample
     10

Fig. 6. Human judgement over ten randomly selected test samples.

5 Conclusions and Future Work

This paper describes how to use the Tacotron 2 architecture to generate inter-
mediate feature representation from Arabic diacritic text using a pre-trained
English model and a total of 2.41 h of recorded speech, followed by WaveGlow
as a vocoder to synthesize high-quality Arabic speech. It also shows the via-
bility of how to apply transfer learning from English text-to-speech to Arabic
10 https://www.mturk.com/.
11 https://drive.google.com/file/d/1rpK8CzAAirq9sWZhe9nlfvxMF1dRgFbF/view.

https://www.mturk.com/
https://drive.google.com/file/d/1rpK8CzAAirq9sWZhe9nlfvxMF1dRgFbF/view
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text-to-speech successfully in spite of the fact that the two languages are quite
different in terms of character level embedding and language phonemes. It also
describes how to preprocess audio speech training data to gain a plausible gen-
erated speech.

There are many possible future enhancements for this work. They may
include integrating Arabic diacrtizer, which will reduce the amount of man-
ual work needed to diacrtise a given Arabic text. Another possible enhancement
is to model speech prosody (intonation, stress, and rhythm) for expressive and
more human-like speech. Modeling prosody could be done using an architecture
similar to Tacotron but with additional neural networks to embed prosody into
the encoded text before encoding the information using the same sequence-to-
sequence architecture. And last but not least, using a much larger dataset to
train the model which will generally produce more plausible speech quality.

Acknowledgment. The authors would like to thank The Bibliotheca Alexandrina for
providing the computing resources through their Supercomputing Facility https://hpc.
bibalex.org.
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Abstract. The aim of this paper is to investigate the effect of volatility
surges during the COVID-19 pandemic crisis on long-term investment
trading rules. These trading rules are derived from stock return fore-
casting based on a Multiple Step Ahead Direct Strategy, and built on
the combination of machine learning models and the Autoregressive Frac-
tionally Integrated Moving Average (ARFIMA) model. ARFIMA has the
feature to account for the long memory and structural change in condi-
tional variance process. The machine learning models considered are a
particular Neural Network model (MLP), K-Nearest Neighbors (KNN)
and Support Vector Regression (SVR). The trading performances of the
produced models are evaluated in terms of economical metrics reflect-
ing profitability and risk like: Annualized Return, Sharpe Ratio and
Profit Ratio. The hybrid model performances are compared to the sim-
ple machine learning models and to the classical ARMA-GARCH model
using a Volatility Proxy as external regressor. When applying these long-
term investment trading rules to the CAC40 index, from May 2016 to
May 2020, the finding is that both MLP-based and hybrid ARFIMA-
MLP-based trading models show higher performances with a Sharpe
Ratio close to 2 and a Profit Ratio around 40% despite the COVID-
19 crisis.

Keywords: Long-memory process · Stock return forecasting ·
Multi-step Ahead Direct Strategy · Long-term investment trading
strategies

1 Introduction and Problem Statement

A standard approach to daily volatility and stock return forecasting, once a
given proxy has been selected, is to apply a statistical Generalized AutoRegres-
sive Conditional Heteroskedasticity (GARCH)-like model [1,12]. There are many
machine learning techniques available that have been identified to be success-
ful in modelling volatility process [5,7]. In order to improve the performance
of forecasting volatility and stock return models, the Autoregressive Fraction-
ally Integrated Moving Average (ARFIMA) was introduced by Granger and
c© Springer Nature Switzerland AG 2020
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Joyeux in [11]. Numerous authors published a lot of papers using ARFIMA
model [13,14,16] or combining ARFIMA with other models on improving the
accuracy of stock return forecasting [4,19]. In all the aforementioned cases, the
modelling techniques are optimized using mathematical criteria. The forecast
error may have been minimized during model estimation, but the evaluation of
the true merit should be based on the performance of a trading strategy. In the
literature, various forecasting models have been applied to find the best trading
signals [6,15,17]. The aim in this work, is to investigate and assess, during high-
risk market conditions due to the COVID-19 pandemic crisis, the trading strate-
gies for a long-term investment of more than 3 years. These trading strategies
are derived from Stock Return Forecasting using Multi-step Ahead Direct Strat-
egy and based on ARFIMA and machine learning models. The performances
are compared based on economical metrics reflecting their profitability and risk.
The rest of the paper will be structured as follows: Sect. 2 will introduce the
notation and definition of the return and the volatility. Section 3 will present the
long memory characteristics of stock returns and their formulation. Section 4
describes the Multi-step Ahead Forecasting strategies and the formulation of
our proposed hybrid modelling. Section 5 describes three simple trading strate-
gies to be assessed from their performance point of view. Section 6 describes the
experiments with a discussion of the performance results. Section 7 concludes
the paper and provides some future research directions.

2 Return and Volatility: Definition and Notation

Modelling financial time series is a complex problem mainly due to the existence
of statistical regularities (stylized facts). They can be observed more or less
clearly depending on the nature of the series and its frequency. The properties
are mainly concerned with daily stock prices and returns.

Return. Let us consider the following quantities of interest, each of them on a
daily time scale: P

(o)
t , P

(c)
t , P

(h)
t , P

(l)
t , respectively the stock prices at the open-

ing, the closing, the maximum and the minimum value for each trading day. Let
rt be the continuously compounded or log return (also simply called the return).
In contrast to the prices, the returns or relative prices do not depend on mone-
tary units which facilitates comparisons between assets. The return formulation
in (1) represents the daily continuously compounded return for day t computed
from the closing prices P

(c)
t and P

(c)
t−1.

rt = ln

(
P

(c)
t

P
(c)
t−1

)
(1)

Volatility as a Proxy. The studies in [18] introduce a family of estimators
based on the normalization of the maximum, minimum and closing values by
the opening price of the considered day. We can then define:
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u = ln

(
P

(h)
t

P
(o)
t

)
d = ln

(
P

(l)
t

P
(o)
t

)
c = ln

(
P

(c)
t

P
(o)
t

)
(2)

where u is the normalized high price, d is the normalized low price and c is
the normalized closing price. We consider the estimator cited in [9] defined by
the Eq. (3):

σ1
t = 0.511(u − d)2 − (2 ln 2 − 1)c2 (3)

3 Long Memory Characteristics

To see how much of an impact past returns for a security have on its future
returns, autocorrelation is used to represent the degree of similarity between a
given time series and a lagged version of itself over successive time intervals.
The examination of the autocorrelation functions (ACF) in Fig. 1 of the his-
torical CAC40 absolute returns, including the COVID-19 period, can serve as
a prelude to study long memory characteristics. In this paper, we cope with
long term memory processes that are non-stationary, and whose ACF decay
more slowly than short-memory processes. We propose ARMA-GARCH and
ARFIMA models to estimate the long memory return process with potential
structural breaks [14].

Fig. 1. The ACF of historical CAC40 absolute returns, including the COVID-19 period,
decays slowly as the lag increases
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3.1 ARMA-GARCH-Based Return

The GARCH(p,q) (Generalized AutoRegressive Conditional Heteroskedasticity)
family of models [1,8,12] is generally employed for volatility forecasting. All
GARCH models assume that the daily return time series rt defined in Eq. (1)
can be expressed as the sum of two components ARMA-GARCH, noted by ragt :

ragt = E(rt|Ωt−1) + εt (4)

where E(.|.) denotes the conditional expectation operator, Ωt−1 the informa-
tion set at time t–1, and εt the innovations of the time series. In the first phase,
the best of the ARMA models is used to model the linear data of time series.
In the second phase, the GARCH is used to model the nonlinear pattern of the
residuals εt. This hybrid model which combines an ARMA model with GARCH
error components is applied to predict an approximation of the future return
series.

ARMA Mean Equation. The ARMA(P,Q) process of autoregressive order P
and moving average order Q can be described as

ragt = rt = μ +
P∑
i=1

airt−i +
Q∑

j=1

bjεt−j + εt (5)

with mean μ, autoregressive coefficients ai and moving average coefficients bi. In
the case of this study, the estimation is made by a ARMA equation model with
(P = 1, Q = 1).

GARCH Variance Equation. The mean equation cannot take into account
the heteroskedastic effects of the time series process as clustering of volatilities.
The εt terms in the ARMA mean equation are the innovations of the form

εt = σtzt, zt ∼ N(0, 1) (6)

The stochastic component εt is expressed as the product between a variable
zt with null mean and unit variance and a time varying scaling factor σt.

The core of the model used, is the variance equation using the volatility proxy
σ1
t defined in (3) as an external regressor, describing how the residuals εt and

the σt past volatility affects the future volatility

σt =

√√√√(ω + ζσ1
t ) +

p∑
j=1

βj(σt−j)2 +
q∑

i=1

αiε2t−i (7)

The coefficients ω, αi, βj , ζ are fitted according to the maximum loglikelihood
estimated procedure proposed in [1]. The GARCH order is defined by (q, p)
(ARCH, GARCH) with the external regressor σ1

t of Eq. (3). In the case of this
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study, the estimation of the volatility made by a GARCH (p = 1, q = 1) model is
considered. The skew-generalized error distribution is used when estimating and
forecasting GARCH models. To estimate the parameters, the “hybrid” strategy
solver is used as a model optimization of the loglikelihood function available in
rugarch package under R [10].

3.2 ARFIMA-Based Return

An autoregressive fractionally integrated moving average (ARFIMA) model
introduced in [11], provides a parsimonious parameterization of long-memory
processes. The ARFIMA model is a generalization of the conventional autore-
gressive moving average (ARMA) model to fractional differences investigating
structural breaks that have been useful in fields as diverse as hydrology, energy
and economics [13,14]. The general form of an ARFIMA(p,d,q) to model the
daily returns rt can be given as:

Φ(B)(1 − B)drt = θ(B)εt (8)

where the parameter d is a non-integer value between [–0.5,0.5], rt is the daily
return at time t, εt is distributed normally with mean 0 and variance σ2, and
Φ(B) and θ(B) represent AR and MA components with lag operator B, respec-
tively. In a fractional model, the power is allowed to be fractional, with the
meaning of the term identified using the following formal binomial series expan-
sion:

(1 − B)d =
∞∑
k=0

(dk)(−B)k (9)

=
∞∑
k=0

∏k−1
a=0(d − a)(−B)k

k!
(10)

= 1 − dB +
d(d − 1)

2!
B2 − . . . (11)

In addition, Bk is the backshift or lag operator, i.e., given rt, Bkrt = rt−k.
The formulation of the daily return rt by ARFIMA model noted by rfit can be
rewritten by:

rfit = rt = Φ(B)−1(1 − B)
−d

θ(B)εt (12)

The ARFIMA process is one of the best-known classes of long-memory mod-
els, having the parameter d for the fractional order, which could capture both the
long-run dependency and the short-run dependency. In general, the estimators
of d can be achieved by using Maximum Likelihood.

4 Multiple Step Ahead Forecasting

A multi-step ahead (also called long-term) time series forecasting task consists
of predicting the next H values [rm+1, · · · , rm+H ] given a univariate time series
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[r1, · · · , rm] comprising m historical observations. When facing a multi-step-
ahead forecasting problem, several choices are possible among strategies intro-
duced in [2,20] among them the recursive and the direct forecasting strategy.

With the recursive strategy, forecasts are generated using a one-step-ahead
model, applied iteratively for the desired number of steps. With the direct strat-
egy, an horizon-specific model is estimated and forecasts are computed directly
by the estimated model for each forecast horizon. In the next sections, a descrip-
tion is given of these two strategies used to forecast the stock returns.

4.1 Recursive Strategy

In this strategy, a single model f is trained to iterate H times, a one-step ahead
forecast. This model assumes an autoregressive dependence of the future value
of the time series on the past m (lag or embedding order) values and additional
null-mean noise term ω as follows:

rt+1 = f(rt, · · · , rt−m+1) + ω (13)

In this work, the one step ahead forecasting approach based on the ARMA-
GARCH autoregressive model, presented in the previous Sect. 3.1, is applied
to estimate the next value r̂t+1. Let the trained one-step ahead model be f̂
under maximum loglikelihood criteria. We formulate the recursive strategy, based
on the definition rag given in Eq. (5), applied to the past 250 returns rt and
volatilities σt by:

r̂t+1 = ragt+1 = f̂(rt, · · · , rt−m+1, σt, · · · , σt−m+1) (14)

4.2 Direct Strategy

The Direct strategy (DirStr) estimates a set of H forecasting models, each return-
ing a forecast for the horizon h ∈ [1, · · · ,H]. In other terms, H models fh are
learned (one for each horizon) from the time series [r1, · · · , rm] where

rt+h = fh(rt, · · · , rt−m+1) + w (15)

with t ∈ [1, · · · , n − H] and h ∈ [1, · · · ,H]. The estimated forecasts r̂t+h are
obtained by using the H learned models f̂h as follows:

r̂t+h = f̂h(rt, · · · , rt−m+1) (16)

We extend the direct strategy formulation with external input (DirStrX).
We incorporate to the model, the ARFIMA expression of the stock returns, rfi

defined in Eq. (12), as follows:

r̂t+h = f̂x
h (rt, · · · , rt−m+1, r

fi
t , · · · , rfit−m+1) (17)

For this investigation, the two direct strategy approaches DirStr and DirStrX
are compared for embedding orders m ∈ {2, 5}, forecasting horizons h ∈ {2}
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and for different estimators f̂ and f̂x based on the implementation of the
three machine learning approaches: Artificial Neural Networks (MLP), k-Nearest
Neighbors (KNN) and Support Vector Machine based regression (SVR). In this
experiment, both the R package nnet and gbcode package [3] have been used.
In the next paragraph, the formulation of f̂ and f̂x using the MLP approach is
given.

MLP-Based Return with DirStr and DirStrX. To illustrate the two direct
strategy approaches derived from the different ML estimators f̂ and f̂x, the refor-
mulation of direct strategy equation is given in (16) and its extention to exter-
nal input in Eq. (17) whose return forecasting model is based on the multi-layer
perceptron (MLP) with a single hidden layer. Equations (18) and (19) describe
the structure of the model for a single forecasting horizon t + h in the con-
text of the Direct Strategy, respectively for a DirStr and a DirStrX model with
external regressor. As shown in Eq. (18), the model can be decomposed into a
linear autoregressive component of order m and a nonlinear component whose
structure depends on the number of hidden nodes H (selected through k-fold
cross-validation). When the external regressor rfi is added, to build the hybrid
ARFIMA-MLP model, it will affect both the linear and nonlinear component,
as shown in (19). In both cases the activity functions fh

o (·) and fh(·) are logis-
tic functions. The preference on MLP first before exploring recurrent methods
is justified by the fact that MLP shows already successful results in modeling
volatility process [7]. The ambition in this work, is to check the performance
of MLP in modeling stock returns and enabling successful long-term trading
strategies including the COVID-19 crisis.

r̂t+h = f̂h = fh
0

⎛
⎜⎜⎜⎜⎜⎝ bo +

m∑
i=1

wiort−i

︸ ︷︷ ︸
MLP linear component

+
H∑
j=1

wjo · fh

(
m∑
i=1

wijrt−i + bj

)
︸ ︷︷ ︸

MLP non-linear component

⎞
⎟⎟⎟⎟⎟⎠
(18)

r̂t+h = f̂x
h = fh

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bo

+
m∑
i=1

wiort−i + w(i+m)or
fi
t−i︸ ︷︷ ︸

Hybrid ARFIMA-MLP linear component

+
H∑
j=1

wjo · fh

(
m∑
i=1

wijrt−i + w(i+m)jr
fi
t−i + bj

)
︸ ︷︷ ︸

Hybrid ARFIMA-MLP non-linear component

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

5 Trading Strategies

For many traders and analysts, market direction is more important than the
value of the forecast itself, as investments can be made simply by knowing
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the direction the returns will move. We propose a trading model based on
the expected next day’s market direction. Three different trading strategies are
defined: the Naive Strategy described in Sect. 5.1, the Buy and Hold strategy
described in Sect. 5.2 and the ML-Based Trading Strategy described in Sect. 5.3.
To compare these different trading strategies, several trading performance mea-
sures presented in Sect. 5.4 are used and the performance results are discussed
in Sect. 6.

We note τt, the buy/sell signal generated for the next day t+1. The expected
return at day t+1 is defined by r̃t+1 = τt+1 × rt+1, where rt+1 is the true return
formulation in Eq. (1).

5.1 Naive Strategy

We call it Naive Strategy because it is simplistic. We buy the stock at next
opening market, if the current day t is bullish, i.e., uptrend where the closing
price P

(c)
t of the current day is greater than its opening price P

(o)
t . In trading,

investors buy a stock or go long if they believe its value will increase. This way,
they can sell it for a higher value than they paid and reap a profit. By the
same token, the stock is sold at next opening, if the current day t is burrish,
i.e., downtrend where the closing price P

(o)
t of the current day is lower than its

opening price P
(o)
t . In this case, investors sell first in the hope the price of the

stock will decline in value and of being able to buy the asset back at a lower
price later.

τt+1 =

{
+1, P

(c)
t ≥ P

(o)
t

−1, P
(c)
t < P

(o)
t

r̃t+1 = τt+1 × rt+1 (20)

5.2 Buy and Hold Strategy

Buy and hold is a long term investment strategy where an investor buys stocks
and holds them for a long time, with the goal that stocks will gradually increase
in value over a long period of time. This is based on the view that in the long
run, financial markets give a good rate of return even while taking into account a
degree of volatility. Buy and hold says that investors will never see such returns
if they bail out after a decline, so it is better for them to simply buy and hold,
ie: r̃t+1 = rt+1

5.3 ML-Based Trading Strategy

The only difference in the ML-Based Trading Strategy compared to the naive
strategy, is in the fact that the forward trend of the predicted return is con-
sidered. The next day market direction and position to take is determined as
follows: if the predicted return r̂t+1 for the next day t+1 is positive, go long at
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opening market on the next day t+1; else if it is negative, go short at opening
market on the next day t+1.

τt+1 =

{
+1, r̂t+1 ≥ 0
−1, r̂t+1 < 0

r̃t+1 = τt+1 × rt+1 (21)

Note that for the sake of assessment, the hypothesis is made that all positions
are liquidated at the closing market. The predicted returns r̂t+1 are the outcomes
based on the ML training models using forecasting strategies described in Sect. 4,
with a time-series cross validation approach. This approach involves training the
model on a window of data and predicting the outcome of the next period,
then shifting the training window forward in time by one period. This process is
repeated along the length of the time series. The cross-validated performance of
the forecasting strategy is simply the performance of the next-days predictions
using accuracy measures as Root Mean Squared Error (RMSE) presented in
Sect. 5.4.

5.4 Forecasting Accuracy and Trading Performance Measures

To compare the accuracy and the trading performance, all models are maintained
with an identical out-of-sample period. Among the widely known statistical mea-
sures, the Root Mean Squared Error (RMSE) is used to assess the forecasting
accuracy. It is observed that these statistical accuracy measures are not enough
to analyze the results on financial criteria [15]. The forecast error may have been
minimized during the model estimation, but the evaluation of the true merit
should be based on economical metrics reflecting profitability and risk.

Some of the more important economical performance measures used are sum-
marized in Table 1. The Sharpe Ratio is a risk-adjusted measure of the return.
Usually, any Sharpe Ratio greater than 1.0 is considered acceptable to good by
investors. A ratio higher than 2.0 is rated as very good. The Profit Ratio is mea-
sured as the ratio between the sum of expected return r̃t being positive and the
sum of expected return r̃t being negative over the predicted period {1, · · · , n}.
The expected return r̃t at time t is the formulation given in (20) and (21), n is
the number of predictions and r̄n represents the expected returns’ average over
{1, · · · , n}.

6 Experimental Results

6.1 Dataset Description

The study is based on the daily CAC40 index prices respectively at the open-
ing, the maximum, the minimum and the closing P

(o)
t , P

(h)
t , P

(l)
t , P

(c)
t . The series

spans from the period of 1st May 2014 to 6th May 2020 covering the COVID-19
period and totalling 6 years history with 1536 trading days. This series has been
transformed to returns rt as defined in Eq. (1). To compare the performance
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Table 1. Trading performance measures

Cumulative return Rc
t = (1 + r̃t) × Rc

t−1, t ∈ {1, · · · , n}
Annualized return RA = 255 1

n

∑n
t=1 r̃t

Annualized volatility σA =
√

255 1
n−1

∑n
t=1(r̃t − r̄)2

Sharpe ratio RA

σA

Profit ratio
∑n

t=1 r̃t>0

|∑n
t=1 r̃t<0|

RMSE
√

1
n

∑n
t=1(rt − r̂t)2

of the proposed ML-Based forecasting models, the recursive one-day-ahead or
direct two-days-ahead return predictions are performed, based on a rolling ori-
gin with a moving window fixed to 250 trading days as a test sample. The
average performance is considered out of 30 independent runs starting with a
250 trading days window taken randomly in the first two years of the data sam-
ples. The different forecasting models ARMA-GARCH, MLP, KNN, SVR and
hybrid ARFIMA-KNN, ARFIMA-SVR, ARFIMA-MLP are considered to assess
the impact of COVID-19 crisis on the trading performances compared to the
Buy and Hold and naive benchmarks.

6.2 Forecast Evaluation and Trading Performance Results

As described in Table 2, most of the proposed models show higher performances
compared to the buy and hold strategy. The best models are the two MLP-
based models, MLP-DirStr and hybrid ARFIMA-MLP-DirStrX with a Sharpe
Ratio close to 2, while the buy and hold strategy gives a Sharpe Ratio of -0.10.
MLP-based models capture well the non-linearity nature of the returns. Another
result shown in Fig. 2 is that the hybrid model ARFIMA-MLP-DirStrX (in blue
color) clearly outperforms the simple MLP-DirStr (in grey color) with a higher
log cummulative returns logRc

t along the period of time 2016 to 2020. The simple
MLP-DirStr suffers on capturing well the long-term memory process since it is
improved with ARFIMA in its hybrid version. Nevertheless, both models succeed
to capture local irregularities due to the volatility surge during the COVID-19
period and the level of log cumulative returns is maintained and increased. The
other models as KNN-DirStr and SVR-DirStr show lower performances. They
fail in capturing long memory characteristics since by introducing the ARFIMA
component in the hybrid ARFIMA-KNN-DirStrX and ARFIMA-SVR-DirStrX,
the performances are increased with a Profit Ratio of 8% respectively 7%. Con-
cerning the ARMA-GARCH model in Fig. 2 (in red color), based on recursive
forecasting strategy, it suffers from low performance and shows limitation in cap-
turing well the surge of volatility during the COVID-19 period with a decrease
of the log cummulative returns. Concerning the naive strategy, despite the poor
forecast accuracy with a largest RMSE, the profit ratio is 11%. As shown in
Fig. 2 (in yellow color), this profit ratio is generated mostly during the pandemic
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crisis as prices are expected to go in the same direction with a decrease. This
sudden gain leads to a Sharpe Ratio less than 1 showing a risky strategy.

Fig. 2. log Rc
t , cummulative returns over the period t from October 2016 till May 2020

(Color figure online)

Table 2. Trading performance results

Model strategy RMSE RA σA Sharpe ratio Profit ratio

ARMA-GARCH 0.01241 7% 19.49% 0.36 7.4%

MLP-DirStr 0.01127 35% 19.37% 1.81 43%

MLP-DirStrX 0.01196 33% 19.38% 1.70 40%

KNN-DirStr 0.01269 −12% 19.47% −0.65 −13%

KNN-DirStrX 0.01228 8% 19.48% 0.40 8%

SVR-DirStr 0.01247 3% 19.49% 0.14 3%

SVR-DirStrX 0.01247 7.3% 19.49% 0.36 7%

Naive 0.01899 10.6% 19.48% 0.54 11%

Buy and Hold - −2% 19.78% −0.10 −2%

7 Conclusion and Future Work

This study reports an empirical work which investigates how forecasting and
trading performances could be improved by using machine learning models cou-
pled with multi-step ahead direct strategy forecasting. This work has resulted
mainly in the creation of sustainable long-term trading algorithms based on the
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advantages of the simple MLP model and the ARFIMA models despite the high-
risk market conditions. These trading models show higher performances with a
Sharpe Ratio close to 2 which is potentially profitable and attractive for invest-
ments from an economic point of view. For the future, Deep Neural Networks
will be investigated to see how they can contribute to increase the performance
for long-term investment strategies.
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Abstract. In recent years, deep neural networks have reached state of
the art performance across many different domains. Computer vision in
particular has benefited immensely from deep learning. Despite their high
performance, deep neural networks often lack interpretability and are
mostly regarded as a black box. Therefore, the availability of tools capa-
ble to provide insights into the models and identify potential errors is cru-
cial. Such tools need to seamlessly integrate within the workflow of data
scientists and ML researchers. In this paper we propose iNNvestigate-
GUI, an open-source graphical toolbox which offers an extensive set of
functionalities for users to compare different networks behavior and give
an explanation to their outputs.

Keywords: Deep learning · Convolutional neural networks ·
Visualization · eXplainable Artificial Intelligence

1 Introduction

Deep learning has become a fundamental tool for a variety of applications.
Thanks to easy-to-use libraries like Keras [5], a deep neural network (DNN) can
be implemented in few lines of code, and many practitioners from a variety of
fields can use DNNs despite limited knowledge and background in machine learn-
ing. However, practitioners still need crucial insights into the trained models.
Typical examples that occur within the development life cycle include debug-
ging models that do not converge or perform poorly on the target labels, or
finding samples which the model cannot handle correctly for the specified task.

Given that DNNs are large models with millions of parameters trained on
thousands of data points, visual analytics is emerging as a powerful tool to aid
the inspection of DNNs and tackle the amount of data generated during their
training [6,13]. For instance, tools as Tensorboard allow to visualize gradients,
activations, losses, etc. focusing on the training and optimization process.

Another important aspect of training DNNs is having insights into their
properties, e.g., determining the most important features for classification.
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To compensate for the black-box nature of DNNs, many eXplainable Artificial
Intelligence (XAI) techniques have been designed to provide post hoc explana-
tions of predictions. Techniques and algorithms that can provide visual interpre-
tations are particularly effective, especially for DNNs targeting image interpre-
tation [13]. Yet, there is a lack of tools to easily integrate such techniques in the
development cycle. Activis [8] is one of the most comprehensive GUIs (Graphical
User Interfaces) available for this purpose, but unfortunately, it is not publicly
available. We argue that similar open source and publicly available interfaces are
crucial to support the integration of XAI techniques in the development of deep
learning models.

In this paper, we present iNNvestigate-GUI1, an open-source, user-friendly,
visual analytics tool for DNNs, especially tailored to computer vision. It is built
upon the open-source iNNvestigate library [2], which provides a reference imple-
mentation of several visualization algorithms. Our aim is to provide a GUI which
simplifies model interpretation by providing easy, code-free access to a compre-
hensive pool of visualization methods.

Designing such software has its challenges. First of all, visual comparison of
several DNNs will be computationally expensive. The target users are diverse,
with varying levels of machine learning knowledge and needs, so visual inter-
pretability is a key factor. The tool should be easily integrated in the research
and development workflow. Last but not least, as a crucial step towards XAI,
when comparing DNNs one should not only take into account the final perfor-
mance but also the reason behind the outputs.

We will explain how iNNvestigate-GUI fits into the literature in Sect. 2. In
Sect. 3, the design challenges are explained in detail. Section 4 gives an overview
of implementation details and design goals. The tool was tested with a group of
non-expert users (computer science students). As described in Sect. 5, it reached
a usability score of 73.34 according to the SUS scale.

2 Related Work

In this section we will first describe the currently available GUI-based tools and
libraries to perform visual analysis in deep learning applications. Previous works
have been categorized according to their license, availability and target audience,
as detailed in Table 1.

2.1 Visual Analytic Tools for Deep Learning

Open-Source Tools for Experienced Users. This group covers the majority of
visual analytic tools in literature and collects most of the most popular appli-
cations used for deep learning applications. The well known TensorFlow Graph
Visualizer [21] for instance, which is part of the widely adopted TensorFlow
framework, allows visualizing a neural network as a directed graph embed-
ding other crucial information like layers hyperparameters in a single scalable
1 Code is available at https://gitlab.com/grains2/innvestigate-gui/.

https://gitlab.com/grains2/innvestigate-gui/
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view. Embedding Projector [17] is another recent visualization tool developed by
Google and included in the TensorFlow framework that allows plotting tensors
in space through different dimensionality reduction techniques. Chung et al. pro-
posed a dynamic real-time visual system to monitor the 2D representation of the
filters learned by different layers and an interactive approach to steer the model
configuration during the training process [4]. The Deep Visualization Toolbox
[22] provides a matrix-like grid-view representation of the activations of the neu-
rons in a given layer for a specific input image or video. A similar approach
has been recently adopted in Summit [7], a tool developed to let practitioners
and experts visualize neuron activations, thus enhancing the interpretability of
the models. Several visualization tools targeting neural networks focus on the
training and optimization phase. For instance, DeepEyes [11] supports the inter-
pretation of the features learned by a CNN model during the training phase.
As evident from Table 1, most of these tools allow visualization of gradients and
activations and are more suited to effectively monitoring the training process
than towards XAI.

Other recent visualization tools like LSTMvis [18] and GANviz [19] are
instead focused on specific types of networks (such as LSTM or GANs), whereas
in this work we are aiming at a more general purpose tool.

Proprietary Tools for Experienced Users. ActiVis [8] is an example of propri-
etary Web application developed by Facebook that represents a comprehensive
alternative to TensorFlow Graph Visualizer. It allows visualizing a neural net-
work through a node-graph representation and performing behavioral analysis
at different levels, from a subset of samples to a single instance and down to
the activation of a single neuron. However, it is deployed on FBLearner Flow,
the machine learning platform of Facebook, and is available only for internal
researchers and practitioners. In [9], Shixia Liu et al. proposed a tool named
CNNVis, which allows to visualize a clustered representation of the features
learned by neurons and the connections between neurons at different layers with
a minimal representation aimed at reducing the visual clutter caused by a high
number of links between nodes. This tool has however no public implementation
and only an online demo is currently available.

Educational Tools. Some visualization tools are designed to help students better
understand how neural networks work and, more in general, to be used for edu-
cational purposes [16,20]. An example, TensorFlow Playground is a web appli-
cation developed by Google researchers, that allows manipulating interactively
a simple model, including the structure, hyper-parameters and data points, to
appreciate directly their effect on the decision boundaries learnt by the network.
However, such tools are not adequate to visualize complex networks and datasets
typical of real-life projects, even for inexperienced researchers.

2.2 Libraries of Visualization Algorithms

DNNs are generally regarded as black boxes due to their lack of explicit inter-
pretability. To tackle this issue, several visualization algorithms have been
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Table 1. Summary of the main deep learning visualization tools and comparison with
the proposed tool.

TF graph

visualizer

Embedding

projector

ActiVis DeepVis CNNVis ReVACNN DeepEyes Summit iNNvestigate-

GUI

Visualization

Node-link graph � �
Embeddings � � � � �
Activations � � � � � � �
Gradients � � � �
Hyperparameters� � �
Attributions � �
Training history �
Framework

TensorFlow � � �
Keras � � �
FBlearner Flow �
ConvNetJS �
Caffe � �
User interface

GUI (web-app) � � � � � �
GUI � �
Command line

Availability

Open source � � � � � � �
Proprietary �

proposed to help understanding why a model is producing a certain output for a
given input [13]. These techniques visualize aspects such as the filters learned by
a specific layer of the network, the activation of a certain neuron, or the gradients
flowing through the layers. Perturbation-based methods stimulate and visualize
changing network behavior by perturbing the input of the model. These meth-
ods rely on different visual paradigms varying from heatmaps to pixel display
grids. Since the seminal work by Zeigler and Fergus [10], the number of available
visualization techniques has been increasing steadily given the growing interest
in XAI. A complete review is outside of the scope of this paper, and the reader
is referred to many excellent surveys available [6,13].

In practice, the applicability of visualization techniques is often hindered
by a lack of publicly available reference implementations [2]. A few libraries
have been recently proposed to gather and unify different visualization tech-
niques in a common framework, including Keras Explain [1], DeepExplain [3]
and iNNvestigate [2]. As detailed in Table 2 all include a variety of gradient-
based (like DeepLIFT [15]), model-independent methods (like LIME [12]) and
perturbation-based methods. Still, their integration in the model development
cycle can be greatly simplified by providing a graphical interface, and presents
several challenges which are discussed in Sect. 3.
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3 Design Challenges

A series of joint design sessions were conducted by involving researchers and prac-
titioners with different levels of expertise. Moving from the analysis of existing
tools, illustrated in Sect. 2, we highlighted several critical gaps to be addressed,
with an emphasis on open-source solutions. A seconded set of design challenges
(C1–C5) was identified.

Table 2. Summary of the available libraries of visualization algorithms.

Keras explain DeepExplain iNNvestigate

Visualization technique

Gradient/saliency maps � � �
SmoothGrad �
DeconvNet �
Guided backpropagation � �
PatternNet

GradCAM �
Guided GradCAM � �
Input * Gradient � �
LRP � � �
Integrated gradients � � �
DeepTaylor �
DeepLIFT � �
Pattern attribution

Prediction difference �
Grey-box occlusion � �
LIME �
Shapley value sampling �

C1. Resource demanding visualizations. Training and evaluating DNNs is
computationally expensive, especially when working with images. The time
required to produce the visualizations should be limited in order to enhance
user acceptability, but many of the existing visualization techniques are
computationally intensive. Likewise, large datasets are usually involved in
running deep learning experiments. Targeting the open-source community,
the proposed implementation should allow a variety of computing setups,
to access the provided visualization techniques.

C2. Diversified set of users. Designing a tool that is easy to use and accom-
modates both expert and non-expert users is challenging. Many of the avail-
able tools either target very inexperienced users and are mostly intended as
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teaching aids, or are designed to work in an industrial R&D environment
where users are likely to have similar experience levels. Open-source tools
target users who may have different needs and preferences. The workflow
should follow a clear and simple structure; the different views of the inter-
face should be self-explanatory and the visualizations designed with clarity,
yet being capable of producing useful insights in non trivial projects.

C3. Performing instance-based and dataset-based analysis. Several XAI
techniques are designed to provide a post hoc explanation of the predictions
on a specific instance. However, as mentioned before, DNNs are trained and
tested on very large datasets, and it is impractical for the user to manually
comb through the dataset to find critical samples. A suggestion system is
needed to rapidly identify data instances that are worthy of inspection.

C4. Simplify integration in R&D. The practical adoption of XAI techniques
is often hindered by i) the lack of a reference, readily-available implemen-
tation and ii) the need to design and implement specific code for their
integration in the model development pipeline. A graphical tool should
allow to produce the expected results significantly faster than writing code
from scratch and, in general, generate the required visualization through a
limited number of clicks.

C5. Model complexity and variety. Many visual analytics tools are designed
to evaluate a single model, and often assume a relatively simple architec-
ture. In practice, dozens of different models may need to be trained and
compared, and we argue that this comparison should take into account not
only performance but also the quality of the prediction and the presence
of systematic biases [14].

4 Implementation

In this section, a detailed description of the functionalities offered by the
iNNvestigate-GUI visualization tool is reported. In Sect. 4.1, the main design
goals (G1–G4) are described and motivated. Then, we move on to illustrate how
these goals were achieved by designing a workflow for easy visualization of DNNs
(Sect. 4.2) and for navigating a large dataset for sample selection (Sect. 4.3).

4.1 Design Goals

G1. Offering to researchers and practitioners a fast code-free tool
for interpreting their models. Available visualization libraries repre-
sent different attempts to create a common reference implementation to
tackle models explainability and interpretability [2]. Their use, however,
passes through an Application Programming Interfaces (API); hence, time
is needed to read the documentations and write ad hoc code. A visual
analytics tool offers a ready-to-use common GUI to multiple visualization
methods. It has to support inspections at different levels of depth, from the
entire model to single layers and units.
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G2. Easy graphical comparison of multiple models. It is common during
a deep learning project to train and evaluate multiple models with differ-
ent architectures, hyper-parameters and configurations. Since there is no
consensus as to which visualization methods have the most desirable prop-
erties [2], the visualization tool must provide an easy interface to compare
the pool of XAI techniques on multiple models.

G3. Allowing navigation of large scale datasets and identification of
poorly classified and borderline data instances. Deep learning mod-
els are in general trained and validated on large scale datasets, whereas most
visualization methods (with the notable exception of embeddings) operate
at the instance level. Selecting interesting input instances for analysis is
not straightforward. Random sampling is time consuming and may be lead
to missed errors. The proposed tool must provide an intuitive and effective
way to select samples that are worthy of further analysis, e.g., instances
that the DNNs cannot classify correctly. This approach could both save
the time needed to perform an ad hoc analysis of the samples, and high-
light crucial instances that may remain unnoticed, eventually increasing
the capability of the tool to provide insights on the model behavior.

G4. Web-based implementation to tackle computationally demanding
tasks. Although visualization is less computationally intensive than train-
ing, some visualization techniques still require an ad hoc training phase and
indeed, a large number of samples may need to be processed. To empower
users with different resources requirements and availability in terms of
memory, disk space and computational power, we chose to develop the
tool as a web application. The advantage of this approach is the capabil-
ity to demand computationally demanding tasks to a back-end, possibly
equipped with GPUs, while providing to the users a lightweight front-end
accessible from anywhere through a web browser. This framework is already
adopted by many popular tools (e.g., Tensorboard, Embedding Projector),
and accommodates both users equipped with high-end workstations as well
as those exploiting cloud computing services (e.g., Amazon Web Services).

4.2 Explaining Custom Models Through Visualization Methods

In this subsection, we describe the complete process to explain the behavior
of DNNs through one or more visualization methods. Based on the analysis in
Sect. 2, we selected the iNNvestigate [2] package as the reference implementa-
tion, and provided an ad hoc implementation for methods not included in this
library, i.e., GradCAM and Guided GradCAM [14]. In addition, it is possible to
visualize the output activations of a given neuron. These methods were included
because they can produce particularly intuitive and easy-to-interpret visualiza-
tions especially suited to novice and non-expert users.

The iNNvestigate-GUI workflow starts by uploading the dataset and the
pre-trained model(s). It is possible to analyze both models trained by the user
or directly select the ImageNet-trained models available in the Keras library,
which could be useful also for teaching purposes. For the visualization methods,
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all the options and all the required configurations parameters are provided as
scroll-down lists to enhance the intuitiveness of the GUI. The tool also allows to
specify a single layer or a single neuron to visualize the activation.

Once the setup is completed, the selected visualizations are generated and
displayed to understand the DNNs behavior. The visualization panel is divided
in multiple boxes, one for each of the models loaded in the configuration phase.
The visualization method is applied to the output of the selected layer (the last
convolutional layer by default) or neuron, for each data instance. Through an
interactive panel it is thus possible to inspect the produced visualizations in a
synchronized fashion, allowing fast and intuitive comparison between the behav-
ior of multiple networks. For each data sample and DNN, the top predictions
and their scores are shown next to the visualization output (see Fig. 1).

Fig. 1. Comparison of different model predictions for one of the images included in
T1. The two models exploit different visual features to make the classification. The
overlapping heatmaps have been produced using the GradCAM technique.

4.3 Suggesting Useful Data Samples for Analysis

iNNvestigate-GUI allows the user to easily identify useful samples to analyze
thanks to the Suggestion panel (see Fig. 2). We assumed that the users should
analyze the predictions for a mix of data instances with different properties: for
instance, incorrectly classified samples allow the user to investigate the source of
possible errors. Moving from these observations, the Suggestion panel categorizes
available samples in order to allow the user to select a mix of samples with
different properties for inspection. We identified two operating modalities based
on i) whether a single or multiple models are compared and ii) whether the
ground truth labels are available.
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In the multiple model setting, the Suggestion panel shows a scatter plot of
the input samples according to the confidence and agreement of the different
models, as reported in Fig. 2. The mean prediction score across all models is
reported on the x axis, and the number of predicted classes on the y axis. While
hovering with the mouse over one of the data points in the scatter plot it is
possible to have a visual preview of the examples. Based on their position in the
chart different types of data instances can be distinguished.

Samples in the right-lower corner are images that are classified in the same
way by all the evaluated models with a high prediction score. Samples in this are
are classified in the same class with high confidence by all the models, and thus
are likely to be correctly classified. Still, they could be interesting to inspect in
order to exclude the presence of systematic biases in the dataset.

Fig. 2. Suggestion panel of iNNvestigate-GUI. A scatter plot represents the input
dataset processed by multiple neural networks and guides the user towards select-
ing meaningful samples for further analysis. The average prediction score (x axis) is
plotted against the number of different classes (y axis) predicted by the models. This
visualization allows to identify data samples with high/low agreement among different
models, as well as those predicted with high/low confidence.

Samples in the top-left corner (low agreement / low confidence) are probably
borderline cases, or correctly classified by only a subset of the DNNs.

Samples in the top-right corner are predicted in different classes (low agree-
ment) but with high prediction scores. They could include out-of- distribution
samples on which DNNs are likely to misbehave, samples that may easily fool
one or more of the models (including adversarial samples), or again, samples cor-
rectly classified only by a selection of models. Under this structure, users could
focus their attention on the top-left and top-right quadrants.
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In the single model setting, the Suggestion panel shows a simpler histogram
plot. The user can choose to visualize the distribution of the activations for a
pre-defined layer, e.g., to select the images that mostly excite a specific layer.
Alternatively, for of labelled data, it is possible to plot the distribution of the
difference between the prediction and the correct label (typically 1.0 for classi-
fication models) to identify samples that are correctly or incorrectly classified.

5 A Usability Test Case

To better evaluate the usability of the tool, two tasks have been prepared and
submitted to a group of 9 computer engineering students (with a previous back-
ground in deep learning) at Politecnico di Torino. All students had at least a
basic knowledge of CNNs and attended at least one course in machine learning.
A set of questions was prepared to guide the users through the completion of the
two tasks. After completing the tasks, all users were administered a question-
naire according to the SUS (System Usability Scale) approach. The two tasks
are summarized as follows:

T1. Evaluate the visual features used by different models to predict
the same subset of input images. This task emulates the comparison of
different trained models. A subset of 100 data samples from the ImageNet
ILSVRC2012 dataset was selected for this task.

T2. Assess whether multiple models use appropriate visual features
to classify a subset of inputs of the same class. This task emulates the
search for visual biases. For instance, a network may inadvertently learn to
predict an object based on co-occurring background features. For this task
a subset of 15 images belonging to the golden retriever class was randomly
selected from the ImageNet ILSVRC2012 dataset.

The users had to compare three popular models available in Keras (VGG16,
ResNet50 and Xception) with varying level of complexity. In order to reduce
the time needed to complete the task, available visualization algorithms where
restricted to Gradient/Saliency, Guided Backpropagation, GradCAM e LRP-z.

During task T1, all users could successfully use the Suggestion panel to iden-
tify images where the models agreed/disagreed or had low/high prediction confi-
dence. In particular, users focused their search in the right-lower quadrant (high
agreement/high confidence, see Fig. 3) and left-top quadrant (low agreement/low
confidence). In both cases, users found GradCAM to be the easiest method to
interpret (66.7% and 55.6% of the users, i.e. 6 out of 9 and 5 out of 9 respec-
tively).

In task T2, the participants were asked to identify samples that were classi-
fied correctly by all the models and samples with inconsistent behavior. Results
showed that 77.8% (7/9) of the participants relied on the histogram chart to
identify both, while 22.2% of the users (2/9) also relied on the scatter plot. In
this case the most intuitive algorithm for the analysis of visual features of images
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classified with the correct labels by most of the models was Guided Backpropa-
gation (55.6% of the votes, i.e. 5/9). On the other side, when analyzing images
that were incorrectly classified, the most popular choice was again GradCAM
(66.7% of users, i.e. 6/9).

In task T2, users were asked to rate the visual explanations on a scale from
1 (completely agreeing) to 5 (completely disagreeing). 55.6% (5/9) of the par-
ticipants was completely satisfied by the visual explanations for the VGG16 and
ResNet50 models (meaning they found the proposed attributions appropriate for
the label), whereas only 44.4% (4/9) were satisfied with the Xception network.

The mean usability score was 73.34%, which according to the SUS usability
scale is above average (any value above 68% is considered above the average).

Moreover, 77.8% (7/9) of the participants declared that they would have not
been able to easily solve both tasks without iNNvestigate-GUI, while only 22.2%
(2/9) stated they could solve the same tasks writing ad hoc code.

Fig. 3. Visual comparison of the predictions made by the three models in T1. The
overlapping heatmap has been produced by the GradCAM algorithm. This is image
was selected by the majority of the participants from the Suggestion view as an example
of high confidence and high agreement classification. All the models are focusing on
similar visual features to classify the frame. Best seen in RGB; consider brighter areas
of the frames in case of gray scale visualization.

6 Conclusion

This paper proposed a new GUI-based Web application featuring a comprehen-
sive pool of XAI visualization algorithms, and intended to compare and under-
stand multiple DNN models. The tool leverages an existing open-source library,
named iNNvestigate, for existing implementation of visualization algorithms.

In contrast to other existing tools, the proposed GUI allows a fast comparison
between multiple models at different levels of depth and implements a suggestion
strategy to highlight the most critical data samples. The target users for the tool
span from the inexperienced learner to researchers and deep learning practition-
ers. As demonstrated by preliminary user experiments, it can be exploited by
inexperienced users to improve and speed up DNNs development.

We plan to extend iNNvestigate-GUI by adding support for deep learning
frameworks other than Keras and implementing additional visualizations, such
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as node-link diagrams, to simplify the selection and inspection of individual
layers. More complex use cases are needed to demonstrate how visual analytics
can prevent biases and errors to be introduced during model training.
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