Small-x Physics and Diffraction – An Experimentalist's Overview

Frank-Peter Schilling / DESY

www.desy.de/~fpschill

10. CTEQ Summer School on QCD Analysis and Phenomenology Sant Feliu de Guixols, Catalonia, Spain

May 2003

Motivation

- The two discoveries at HERA:
 - 1. The strong rise of F_2 towards low x
 - 2. The high cross section for hard diffraction
- Understanding of the high-energy, i.e. small x limit of QCD
- Do we enter a new regime of high parton densities (saturation) at low x and when do we reach the unitarity limit?
- Where and how does the transition from perturbative QCD ($Q^2 \gg \Lambda_{QCD}$) to soft (non-perturbative) hadronic physics at $Q^2 = 0$ take place?
- What is the region of validity of DGLAP and BFKL?
- How can we understand the phenomenon of diffraction in the context of (p)QCD?
- Is the "Pomeron" universal or if not, why not?

Outline – Small-x

- Introduction: Deep inelastic Scattering at HERA (Reminder)
- Introduction to BFKL evolution
- Inclusive DIS: Problems of DGLAP?
- Measurements of F_L
- The small-x limit and Saturation
- Rise of F_2 at low x
- Transition region at low Q^2
- QCD Dynamics through hadronic final state measurements
- Virtual photon structure
- CCFM evolution
- Forward jet and particle production

Outline – Diffraction

- Observation of hard diffraction at HERA
- Soft hadron-hadron interactions and Regge theory
- Inclusive Diffraction in DIS at HERA
- Diffractive final states at HERA: Jets, Charm
- 2-gluon exchange models
- Light vector meson production
- Diffraction at the Tevatron

Reminder: Deep Inelastic Scattering at HERA

A "typical" DIS event at high Q^2 in the H1 detector:

Protons: $E_p = 920 \text{ GeV}$

Electrons: $E_e = 27.5 \text{ GeV}$

Reminder: Deep Inelastic Scattering at HERA

$$Q^2 = -q^2 = (k - k')^2$$

Photon virtuality

$$x = \frac{-q^2}{2P \cdot q} \ (0 < x < 1)$$
 Parton momentum fraction "Bjorken-x"

$$s = (k + P)^2 = 4E_e E_p \sim (320 \text{ GeV})^2$$

ep CMS energy squared

$$y = \frac{P \cdot q}{P \cdot k} = Q^2/xs \ (0 < y < 1)$$
 inelasticity, approx. $y = 1 - \frac{E_e'}{E_e}$

$$W^2 = (q + P)^2 = ys - Q^2$$

 $\gamma^* p$ CMS energy squared

Cross section and structure functions (neglecting Z^0 exchange):

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left(\left[1 - y + \frac{y^2}{2} \right] F_2 - \frac{y^2}{2} F_L \right)$$

DIS Kinematic plane

• high Q^2 , high x: Tevatron jets

• medium Q^2 , high x: Fixed target expts.

• HERA: high CMS energy gives extension of 2-3 orders of magnitude towards lower x at same Q^2

The HERA discovery: Steep rise of F_2 at low x

Before HERA: low-x behaviour of F_2 unknown (see spread of then existing pdf's)

2000: high precision (few percent)!

Rise was expected, but turned out to be very steep!

x and Q^2 dependence of $F_2(x,Q^2)$

x dependence:

2EUS+H1 Q²=2.7 GeV² 2EUS 96/97 H 196/97 NMC, BCDMS, E665 ZEUS NLO QCD Fit (prel.2001) H 1NLO QCD Fit Q²=6.5 GeV² Q²=8.5 GeV² Q²=10 GeV² Q²=18 GeV² Q²=18 GeV²

10 -3

10 10 -5

10 10 -5

Q^2 dependence:

1.5

0.5

DGLAP evolution

DGLAP evolution equations:

$$\frac{\mathrm{d}q_i(x,Q^2)}{\mathrm{d}\ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{\mathrm{d}z}{z} \left[q_i(z,Q^2) P_{qq} \left(\frac{x}{z} \right) + g(z,Q^2) P_{qg} \left(\frac{x}{z} \right) \right]$$

$$\frac{\mathrm{d}g(x,Q^2)}{\mathrm{d}\ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{\mathrm{d}z}{z} \left[\sum_i q_i(z,Q^2) P_{gq} \left(\frac{x}{z} \right) + g(z,Q^2) P_{gg} \left(\frac{x}{z} \right) \right]$$

Splitting functions:

$$P_{qq}(z) = P_{gq}(1-z) = \frac{4}{3} \left[\frac{1+z^2}{(1-z)_+} \right] + 2 \cdot \delta(1-z)$$

$$P_{qg}(z) = \frac{1}{2} \left(z^2 + (1-z)^2 \right)$$

$$P_{gg}(z) = 6 \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] + (11 - \frac{n_f}{3}) \cdot \delta(1-z)$$

- Leading powers of $\alpha_s \log Q^2/Q_0^2$ are considered
- No absolute prediction for $p_i(x, Q^2)!$
- Describes only evolution of pdf's with Q^2
- Need input for x-dependence at starting scale Q_0^2
- Determine pdf's from global fit

From DGLAP to BFKL evolution

DGLAP:

- collinear singularities factorized in pdf
- evolution in $Q^2 \sim p_T^2$ or k_T^2
- $\sigma \sim \sigma_0 \int \frac{dz}{z} C\left(\frac{x}{z}\right) f(z, Q^2)$
- Strong ordering in k_T along ladder

What happens at low x?

- DGLAP includes only $[\alpha_s^m \log(Q^2/Q_0^2)^n]$ terms
- At very low x, terms $\left[\alpha_s^m \log(1/x)^n\right]$ must become important (e.g. at HERA?)
- If $\log(Q^2/Q_0^2) \ll \log(1/x)$, need resummation of terms $[\alpha_s^m \log(1/x)^n]$ to all orders by keeping full Q^2 dependence
- Must relax strong ordering of k_T , need integration over full k_T phase space

BFKL evolution

- Integration over full k_T phase space:
- Unintegrated gluon distribution $f(x, k_T^2)$: $xg(x, Q^2) = \int_{\mu^2}^{Q^2} \frac{dk_T^2}{k_T^2} f(x, k_T^2)$
- n-rung contribution f_n given in terms of f_{n-1} , i.e. strong ordering in x
- Recursion relation $f_n(x_n, k_T^2) = \int_{x_n}^1 \frac{dx_{n-1}}{x_{n-1}} \int dk_{T,n-1}^2 \mathcal{K}(k_{T,n}^2, k_{T,n-1}^2) f_{n-1}(x_{n-1}, k_{T,n-1}^2) \\ (\mathcal{K}(k_{T,n}^2, k_{T,n-1}^2) \text{ is the "BFKL kernel"})$
- Leads to differential form: $\frac{df(x_n, k_{T,n}^2)}{d \log(1/x)} = \int dk_{T,n}^2 \mathcal{K}(k_{T,n}^2, k_{T,n-1}^2) f(x_{n-1}, k_{T,n-1}^2)$
- Solution at LO:

$$f(x, k_T^2) \sim \sqrt{k_T} \frac{\left(\frac{x}{x_0}\right)^{-\lambda}}{\sqrt{2\pi\lambda'' \log(x_0/x)}} \exp\left(\frac{-\log(k_T^2/k_T^2)}{2\lambda'' \log(x_0/x)}\right)$$
$$\lambda = \frac{3\alpha_s}{\pi} 4 \log 2 \approx 0.5$$

QCD Evolution: DGLAP vs BFKL

Evolution in the $(k_T^2, 1/x)$ plane:

DGLAP

BFKL

- Strong ordering of transverse momenta
- Diffusion pattern along ladder
- Problem:"Diffusion into infrared"

BFKL: summary

Summary:

- In limit of small x and moderate Q^2 BFKL is more appropriate
- BFKL resums $\log(1/x)$ terms
- leads to power behaviour $xg(x, Q^2) = x^{-0.5}$ (at LO)
- However: too steep for latest data:
 - \rightarrow need to include running of α_s
 - → need to perform NLO calculation:
- NLO BFKL: corrections are large and negative indication that λ gets smaller

Search for BFKL effects at HERA:

- Present $F_2(x, Q^2)$ data very well described by NLO DGLAP fits
- BFKL effects maybe present in data but "hidden" by flexibility of DGLAP input distributions?
- More promising to search for BFKL in final state ? (see later)

Success of NLO DGLAP

- QCD fit to ZEUS+other data
- Very good description of data for $Q^2 > 2.5 \ {\rm GeV}^2$
- Precise determination of pdf's
- BFKL not needed?!

DGLAP problems (?)

Recent MRST global analysis (including approx. NNLO):

Gluon negative at low x and Q^2 (not an observable)

NLO F_L negative at low x and Q^2 NNLO F_L positive, huge (oscillating) differences!

DGLAP problems (?)

ZEUS gluon also negative at small Q^2

Remarks:

- $xg(x,Q^2)$ is not an observable, so not immeaditely a problem
- But F_L is an observable and it should not be negative!
- N.B. Sea quarks from $g \to q\bar{q}$ splitting, but there is no glue at low Q^2 and x, but there is sea!
- Does all this indicate that pure DGLAP is insufficient?

... or pert. theory not justified when $Q^2 = 1$ $\alpha_s(Q^2 = 1 \text{ GeV}^2) \sim 0.5(\text{LO}) \ 0.4(\text{NLO})$

• It is very important to measure F_L at low Q^2 , also because of its close relation to the gluon

The longitudinal structure function $F_L(x,Q^2)$

Reminder:

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left(Y_+ F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right)$$

where
$$Y_{+} = 1 + (1 - y)^{2}$$

 F_2 and F_L are related to the total and the longitudinal γ absorption cross sections:

$$F_2(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha} \left[\sigma_T(x, Q^2) + \sigma_L(x, Q^2) \right]$$

$$F_L(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha} \, \sigma_L(x,Q^2)$$

One often defines the "reduced cross section" $\sigma_r(x, Q^2)$:

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4}Y_+\sigma_r(x,Q^2)$$

So that

$$\sigma_r(x, Q^2) = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

The longitudinal structure function $F_L(x,Q^2)$

- Due to positivity of cross sections: $0 \le F_L \le F_2$
- In QPM, $F_L = 0$ (quarks have only longit. momentum, "Callan-Cross rel.")
- In QCD, $F_L > 0$ (quarks interact via gluons, struck quark can have transverse momentum)
- Due to its origin, F_L is directly connected with the gluon distribution
- At NLO: $F_L \sim rac{lpha_S}{2\pi} \left[C_q^L \otimes F_2 + C_g^L \otimes \sum_i e_i^2 \, z g(z,Q^2)
 ight]$

- Possibilities for direct measurements:
 - 1. Measure cross sections at two different CMS energies, e.g. lower E_p (HERA-II)
 - 2. "simulate" lower E_e by analysing ISR events (exp. difficult)
- ullet Alternative: Exploit fact that F_L contributes only at high y

F_L extraction at high y (H1)

H1 event at low Q^2 :

- At high y: detect low energy $(E'_e > 3 \text{ GeV})$ electrons
- BST (Backward Silicon Tracker) used for background rejection
- At low *y*, hadronic jet goes forward, so no vertex in central tracker (BST vertex)

Reduced cross section at low Q^2

 F_L manifests as turnover at low x (i.e. high y) $(Q^2 = sxy)$

F_L extraction at high y (H1)

- Shape at high y driven by kinematic factor y^2/Y_+
- F_2 at low x well described by $x^{-\lambda}$ (see later)
- Fit to data $\sigma_r(x,Q^2) = cx^{-\lambda} \frac{y^2}{Y_+} F_L(Q^2)$
- Extract one $F_L(\langle x \rangle, Q^2)$ value per Q^2x bin

F_L extraction at high y (H1)

 F_L vs. x:

 F_L vs. Q^2 at fixed W:

- Consistent with F_L from NLO QCD fit for $Q^2 \geq 1.35 \text{ GeV}^2$
- F_L MRST 2001 too low at small x and Q^2
- Discrimination between models

 F_L extraction is important consistency check for DGLAP QCD

Direct measurement without reduced E_p ?

F_L measurement using ISR events (ZEUS)

Use initial state QED radiation events to "emulate" lower E_e :

Bremsstrahlung photon detected in small-angle calorimeter

- Experimentally challenging
- Improve with more data

Introduction: The low-x limit of F_2 and Saturation

- Remember: $x \sim \frac{1}{W^2}$, i.e. small x corresponds to the high-energy limit of γp scattering
- ullet Due to unitarity considerations (probability for interaction < 1), the rise towards small x / high energies cannot commence "forever"
- Expect that at some point the number of gluons becomes so big that recombination / screening effects start to play a role

- Possible experimental observation: Taming of the rise of F_2 at very low x
- Question: Do we see hints for saturation at HERA?

Introduction: The low-x limit of F_2 and Saturation

Naive estimate:

$$N_g \sigma_{gg} \approx xg(x, Q^2) \frac{\alpha_s(Q^2)}{Q^2} = \pi R^2$$

where

- $-N_g$: Number of gluons per unit rapidity with transv. size 1/Q
- $-\sigma_{gg}$: Transv. area of single gluon (gluon-gluon cross section)
- $-R \approx 1 \text{ fm} \approx 5 \text{ GeV}$

$$\kappa = xg(x, Q^2) \frac{\alpha_s(Q^2)}{\pi R^2 Q^2}$$

 $\kappa \ll 1$:

Interaction between gluons negligible

 $\kappa \gg 1$:

Recombination / shadowing effects important

Numerical estimate shows that at HERA saturation is irrelevant?!

GLR Equation (Gribov, Levin, Ryskin):

Gluon recombination competes with usual evolution:

$$\frac{df(x,k_T^2)}{d\log(1/x)} = \mathcal{K} \otimes f(x,k_T^2) - \frac{81\alpha_s^2(k_T^2)}{16R^2k_T^2} (xf(\xi,k_T^2))^2$$

Non-linear evolution: at some point, non-linear term cancels linear term → evolution stops (saturation)

→ look at Data

The rise of F_2 at low x

HERA high precision data allow to study rise of F_2 locally

$$\lambda = -\left(\frac{d\log F_2}{d\log x}\right)_{Q^2}$$

- At low x < 0.01 (away from valence region), λ constant at given Q^2 , i.e. $F_2(x,Q^2) = c(Q^2)x^{-\lambda}$
- ullet λ increases with Q^2

The rise of F_2 at low x

• Assume now that λ independent of x at fixed Q^2 :

$$F_2 = cx^{-\lambda(Q^2)}$$

- 1. Make fit at each $Q^2 \ge 3.5 \text{ GeV}^2$
- 2. Fit λ values according to $\lambda(Q^2) = a \log(Q^2/\Lambda^2)$ Result: $a = 0.0481 \pm 0.0013 \pm 0.0037$

$$\Lambda = (292 \pm 20 \pm 51) MeV$$

No sign of taming of rise at low *x* seen!

Transition region at low Q^2

- F_2 "lays down" towards low Q^2
- How far does pQCD work?
- Where and how is the transition to the non-perturbative region?
- How can we understand the soft regime?
- DGLAP works well down to $Q^2 \sim 1~{
 m GeV}^2,$ but $\alpha_s(1~{
 m GeV}^2) \sim 0.4~!$
- Is $Q^2 \sim 1 \, \mathrm{GeV}^2$ large enough?
- What is the picture at low Q^2 ?

Transition region at low Q^2

- Smooth, logarithmic increase of slope λ with Q^2
- At $Q^2 \sim 1 \text{ GeV}^2$, values around 0.1 are reached

Photon-proton cross section

Total γp cross section vs. energy:

At high energies: $\sigma \sim s^{0.08}$ ("soft Pomeron") \rightarrow see second part!

Investigating QCD dynamics through final state processes

- We have seen: inclusive cross section extremely well described by NLO DGLAP, down to lowest x
- But: at low x, we expect contributions $\sim [\alpha_s^m \log(1/x)^n]$ to play a role
- Is DGLAP too flexible (parameterization of input pdf's)?
- → More promising to look into final state?!
- Study NLO (i.e. $\mathcal{O}(\alpha_s)$) processes: Jet production in DIS
- Interplay of more than one scale Q^2 , p_T , (m_q)
- Enhance phase space sensitive to dynamics of QCD cascade (forward jets, forward π^0)

Processes:

- Dijets
- Forward jets and π^0 's

Hadronic final state: DGLAP in trouble

"Forward" jets:

small x_{bj} , $p_{T,jet} \approx Q^2$, large $x_{jet} = E_{jet}/E_p$ (Mueller-Navelet Jets)

 \rightarrow Suppress DGLAP (k_T ordered) evolution

NLO DGLAP far below data!

Hadronic final state: DGLAP in trouble

Inclusive jets in forward region:

$$1.5 < \eta < 2.8, 7^{o} < \theta_{jet} < 25^{o}$$

- huge NLO corrections (need NNLO)
- problems at low Q^2 $(Q^2 \ll p_T^2)$

Forward jet or particle production in DIS

high p_T forward jets and particles are sensitive to underlying parton dynamics

(Dis-) Advantages of jet and π^0 measurements:

Forward jets

- + better parton correlation
- + higher rates
- ambiguities of jet algorithms
- exp. difficult in very fwd. region

Forward π^0

- fragmentation effects more significant
- smaller rate
- + identification posssible in more fwd. region

Concept of resolved virtual photons

Well known that real ($Q^2 = 0$) photon can behave as hadron: $\gamma \to q\bar{q} + ...$ and VM components

Idea: For jet production in DIS, p_T of jets can "resolve" structure of virtual photon:

 x_{γ} : momentum fraction of parton from photon

 $x_{\gamma} = 1$: direct $x_{\gamma} < 1$: resolved

$$\frac{\mathrm{d}^5 \sigma^{ep}}{\mathrm{d}y \, \mathrm{d}x_{\gamma} \, \mathrm{d}\xi \, \mathrm{d}\cos\hat{\theta} \, \mathrm{d}Q^2} = \frac{1}{32\pi s} \, \frac{f_{\gamma/\mathrm{e}}(y,Q^2)}{y} \, \sum_{ij} \, \frac{f_i^{\gamma^*}(x_{\gamma},\mu_f^2,Q^2)}{x_{\gamma}} \, \frac{f_j^P(\xi,\mu_f^2)}{\xi} \, \hat{\sigma}(\cos\hat{\theta}) \, ,$$

 γ^* pdf's $f_i^{\gamma^*}(x_\gamma, \mu_f^2, Q^2)$ correspond to real photon, with damping depending on Q^2 , p_T^2 Models: e.g. Schuler and Sjöstrand (SaS) or Drees and Godbole (DG)

Concept of resolved virtual photons

- ullet contribution from non-ordered k_T along the ladder
- DGLAP evolution from photon (top) and proton (bottom); hard scatter in "middle"

 \rightarrow Phenomenological approach to take <u>non-ordered</u> k_T and/or <u>higher orders</u> into account

Implemented in Monte Carlo event generators (e.g. RAPGAP, HERWIG)

Virtual photon structure in dijet events

Triple differential dijet cross section $\frac{d^3\sigma}{dQ^2dE_Tdx_{\gamma}}$:

- Significant cross section at low x_{γ}
- resolved contribution important at low Q^2 $(E_T^2 \gg Q^2)$
- Problems:
 - Choice of scale?
 - Conceptual?

Also supported by energy flow measurements in γ hemisphere

CCFM evolution: The solution?

Catani, Ciafaloni, Fiorani, Marchesini

Angular ordering of emissions:

$$\theta_{i-1} < \theta_i$$

$$\xi_{i-1} < \xi_i$$

When using rescaled transverse momentum $q_i = \frac{p_{T,i}}{1-z_i}$:

- Large z: p_T ordering (DGLAP)
- Small $z \to 0$: no restriction on p_T (BFKL)
- Use of off-shell matrix elements (not k_T integrated, " k_T factorization")
- Un-integrated gluon density $\mathcal{A}(x,k_T^2,\mu^2)$: $\int_0^{\mu^2}dk_T^2\mathcal{A}(x,k_T^2,\mu^2)=xg(x,\mu^2)$

CCFM evolution equation: $\mu^2 \frac{d}{d\mu^2} \frac{x \mathcal{A}(x, k_T^2, \mu^2)}{\delta_s(\mu^2, Q_0^2)} = \int dz \frac{d\Phi}{2\pi} \frac{P(z, (\mu/z)^2, k_t^2)}{\delta_s(\mu^2, Q_0^2)} x' \mathcal{A}(x', k'_T^2, (\mu/z)^2)$

CCFM evolution

Initial state QCD cascade in angular ordered region

CCFM evolution equation:

$$\mu^{2} \frac{d}{d\mu^{2}} \frac{x \mathcal{A}(x, k_{T}^{2}, \mu^{2})}{\Delta_{s}(\mu^{2}, Q_{0}^{2})} = \int dz \frac{d\Phi}{2\pi} \frac{\tilde{P}(z, (\mu/z)^{2}, k_{t}^{2})}{\Delta_{s}(\mu^{2}, Q_{0}^{2})} x' \mathcal{A}(x', k_{T}'^{2}, (\mu/z)^{2})$$

with the splitting function:

$$\tilde{P}(z, \mu^2, k_t^2) = \frac{\bar{\alpha}_s(q^2(1-z)^2)}{1-z} + \frac{\bar{\alpha}_s(k_T^2)}{z} \Delta_{ns}(z, \mu^2, k_t^2)$$

where

$$\Delta_s(\mu^2, Q_0^2)$$
, $\Delta_{ns}(z, \mu^2, k_T^2)$: are the "Sudakov" and "non-Sudakov" form factors

Presently formulated only at leading order

Summary of approaches to small-x dynamics

Forward π^0 production

$$p_{T,\pi}^* > 3.5 \text{ GeV}$$

 $5^o < \theta_{\pi} < 25^o$

- DGLAP dir.+ res. γ^* : good description
- DGLAP dir. only: too low
- CCFM: OK except lowest Q^2 , x

Forward jet production

Large differences between models:

- CDM (random p_T emissions, \sim BFKL): very good
- DGLAP: resolved γ^* needs to be included
- CCFM: too high

... but also still large uncertainties of data as well as models (scale)

Summary: Small-x

Inclusive DIS:

- NLO DGLAP very successful in describing present F_2 data down to $Q^2 \sim 1~{\rm GeV}^2$ (too flexible?)
- BFKL not (yet) needed ?!
- No sign of saturation seen at smallest x at HERA
- Smooth transition perturbative non-perturbative observed at around $Q^2\sim 1~{\rm GeV}^2$ (flattening of $\lambda(Q^2)$)
- Measurements of $F_L(x, Q^2)$ important consistency check of DGLAP QCD

Final states:

- Jet production very sensitive to low-x dynamics (heavy flavour production also, but not covered here)
- In particular, forward jets and π^0 's: Strong discriminating power between different approaches
- Concept of resolved γ^* supported by data, although theoretically not very firmly rooted
- CCFM tries to interpolate between DGLAP and BFKL, promising results, but beyond LO?
- NNLO DGLAP very welcome!

Observation of diffractive DIS at HERA

Standard DIS event:

- Parts of proton remnant detected in proton beam direction
- Colour flow between current jet and p remnant:
 Production of excta particles

Diffractive DIS event:

- No proton remnant detected
- Large gap without particle production between current jet and p beam direction
- Interpretation: p stays intact, escapes down beam pipe
- Photon scattered off colourless component "in" proton (often called "Pomeron")

But what is the Pomeron?

Soft hadron-hadron collisions

- Total hadronic cross sections (e.g. $p\bar{p} \to X$) are $\mathcal{O}(\mathrm{mb})$
- in pQCD, can calculate e.g. hard jet production $(p\bar{p} \to \text{jet} + \text{jet} + \text{X})$, which is $\mathcal{O}(\text{pb}) \to \text{In pQCD}$, can calculate only tiny fraction of cross section!

And what about the rest?

- In the 60's (before the advent of the quark model and QCD), Regge theory was developed to address
 - particle spectrum
 - forces between particles
 - high energy behaviour of cross sections

It starts with the "S-Matrix" prescription:

Consider the $2 \rightarrow 2$ process $AB \rightarrow CD$:

$$S=<{
m out}|{
m in}>{
m is}$$
 the scattering amplitude, where $S=1_{
m M}+iT$

Two-body scattering $A + B \rightarrow C + D$

Mandelstam variables

$$s = (p_a + p_b)^2$$
 total CMS energy
 $t = (p_a - p_c)^2$ exchanged (4-monentum transfer)²
 $u = (p_a - p_d)^2$
 $s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$

 $a+b \rightarrow c+d$

Regge theory based on 3 Postulates:

• Lorentz invariance: S = S(s, t)

$$\overline{SS^\dagger} = S^\dagger S = 1_{
m M}$$
 conservation of probability, leads to optical theorem: $\sigma_{tot}(s) \sim \frac{1}{s} {
m Im} \; T(s,t=0)$

Analyticity:
 S matrix is analytic function of Lorentz invariants with only those singularities req. by unitarity

Crossing symmetry: $T_{AB\to CD}(s,t) = T_{A\bar{C}\to \bar{B}D}(t,s)$ (arises from analyticity)

Regge theory

Consider: $pp \rightarrow n\Delta$

- Naive model: Pion exchange (s-wave): amplitude contains propagator of the form $T(s,t) \sim \frac{1}{m^2-t}$
 - a) t < 0 ("t-channel")
 - b) t > 0: a pole appears at $t = m_{\pi}^2$ in "s-channel"
- More general: allow exchange of all mesons with appropriate quantum numbers:

$$T(s,t) = \sum_{l=0}^{\infty} (2l+1)T_l(t)P_l(\cos\theta_l)$$
 where

 $T_l(t)$ partial wave function P_l Legendre polynom

- Hypothesis: $T_l(t) \sim \frac{1}{l-\alpha(t)}$ ("Regge pole")
- Asymtotically at large s, small |t|: $T(s,t) \sim \beta_a(t)\beta_b(t) \left(\frac{s}{s_0}\right)^{\alpha(t)}$ $\frac{d\sigma}{dt} = \frac{1}{s^2} |T(s,t)|^2 = \left[\beta_a(t)\beta_b(t)\right]^2 \left(\frac{s}{s_0}\right)^{2\alpha(t)-1}$

Chew, Frautschi (1961):

 $\alpha(t)$ generalized angular momentum Integer at part. masses $I=\alpha(m^2)$

Approx: linear: $\alpha(t) = \alpha_0 + \alpha' t$ Regge trajectory

 $\beta_i(t)$: related to form factor

Regge theory

- Via optical theorem, total cross section is: $\sigma_{tot}(s) = \frac{1}{s} \text{Im } T(s, t = 0) \sim [\beta_a(0)\beta_b(0)] s^{\alpha(0)-1}$
- If $\beta(t) \sim e^{bt}$ is assumed (good at small |t|): $\frac{d\sigma}{dt} = \left[\beta_a(t)\beta_b(t)\right]^2 \left(\frac{s}{s_0}\right)^{2\alpha(t)-2} = \frac{d\sigma}{dt}\Big|_{(t=0)} e^{Bt}$ where $B = b_{0,a} + b_{0,b} + 2\alpha' \log\left(\frac{s}{s_0}\right)$ ("shrinkage")
 for proton, $b_{0,p} \approx 5 \text{ GeV}^{-2}$ corresponding to p radius $R_p = 1 \text{ fm}$

pp and πp data:

At low energies: $\sigma \sim s^{0.55-1} \, (\rho^0 \, \text{trajectory})$

At high energies rising!

But: For all reactions with charge exchange, $\alpha(0) < 1$ (Pomeranchuk theorem, 1959)!

The "Pomeron"

- To parameterize high energy behaviour, introduce new trajectory with $\alpha(0) > 1$: The Pomeron trajectory
- Pomeron exchange: only vacuum quantum numbers exchanged;

Pomeron mediates elastic scattering

- Fits to data (e.g. Donnachie, Landshoff): $\alpha_{I\!\!P}(t) = 1.08 + 0.25t$
- Also describes γp scattering: $F_2(x,Q^2) \sim f(Q^2) x^{-\lambda}$, i.e. W^{λ} , where $\lambda \sim 0.1$ for $Q^2 \to 0$

Diffraction at HERA

- HERA: An ideal laboratory to study hard diffraction:
- 10% of low-x DIS events are diffractive

Can be viewed as diffractive $\gamma^* p$ interaction:

Virtual photon γ^* as a probe

- Inclusive DIS: Probe proton structure $(F_2(x, Q^2))$
- Diffractive DIS:
 Probe structure of colour singlet exchange!

NB 1: "hard" means presence of hard scale (here Q^2)

NB 2: Hard diffraction first observed at $Sp\bar{p}S$ (UA8) in dijet production (p_T as hard scale)

Experimental Techniques

Forward Proton Spectrometers at z = 24...90 m

Measure leading proton

- Free of dissociation bkgd.
- Measure *p* 4-momentum
- low statistics (acceptance)

Rapidity Gap Selection in central detector

Require large rapidity gap

- $\Delta \eta$ large when $M_{
 m central} \ll W_{\gamma p}$
- integrate over outgoing *p* system
- high statistics

Diffractive Cross section and Structure Functions

$$x_{I\!P} = \xi = \frac{Q^2 + M_X^2}{Q^2 + W^2} = x_{I\!P/p}$$
 (momentum fraction of colour singlet exchange)

$$\beta = \frac{Q^2}{Q^2 + M_Y^2} = x_{q/IP}$$

 $\beta = \frac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P}$ (fraction of exchange momentum of q coupling to γ^* , $x = x_{\mathbb{P}}\beta$)

$$t = (p - p')^2$$

(4-momentum transfer squared)

Diffractive reduced cross section σ_r^D :

$$\frac{d^4\sigma}{dx_{I\!\!P}\ dt\ d\beta\ dQ^2} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2} \right) \sigma_r^{D(4)}(x_{I\!\!P}, t, \beta, Q^2)$$

Structure functions F_2^D and F_L^D :

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1-y+y^2/2)} F_L^{D(4)}$$

Integrated over t: $F_2^{D(3)} = \int dt \ F_2^{D(4)}$

– Longitudinal F_L^D : affects σ_r^D at high y

 $[\gamma \text{ inelasticity } y = Q^2/sx]$

 $-\operatorname{If} F_{L}^{D} = 0$: $\sigma_{r}^{D} = F_{2}^{D}$

Diffractive Processes in γp Interactions

- All 4 processes can be measured with varying Q^2 , W, t, M_X , M_Y
- $Q^2 \sim 0$, $|t| \sim 0$: similar to soft hadronic diffraction

• large Q^2 : γ^* probes diffractive exchange

 large |t|: perturbative QCD applicable to IP (BFKL)?

Factorization in Diffraction

Proof of QCD Factorization for diffractive DIS:

• Diffractive parton distributions (Trentadue, Veneziano, Berera, Soper, Collins, ...):

$$\frac{d^2\sigma(x,Q^2,x_{I\!\!P},t)^{\gamma^*p\to p'X}}{dx_{I\!\!P}\,dt} = \sum_i \int_x^{x_{I\!\!P}} d\xi \hat{\sigma}^{\gamma^*i}(x,Q^2,\xi) \; p_i^D(\xi,Q^2,x_{I\!\!P},t)$$

- $\hat{\sigma}^{\gamma^*i}$ hard scattering part, as in incl. DIS
- p_i^D diffractive PDF's in proton, conditional probabilities, valid at fixed $x_{I\!\!P}, t$, obey (NLO) DGLAP

Regge Factorization / 'Resolved Pomeron' model:

 $x_{I\!\!P},t$ dependence factorizes out (Donnachie, Landshoff, Ingelman, Schlein, ...):

- additional assumption, no proof!
- consistent with present data if sub-leading *IR* included

Shape of diffr. PDF's indep. of $x_{I\!\!P}, t$, normalization controlled by Regge flux $f_{I\!\!P/p}$

Recent σ_r^D Measurements

- $1.5 < Q^2 < 12 \,\mathrm{GeV}^2$
- $6.5 < Q^2 < 120 \,\mathrm{GeV}^2$ Measurements based on rapidity gap method
- $2.5 < Q^2 < 20 \text{ GeV}^2$ Measurement using H1 FPS (Forward Proton Spectrometer)
- Agreement between methods

High precision measurements of β (or x) and Q^2 dependences

 \Rightarrow DGLAP QCD interpretation

Forward Proton Detectors: t Measurement

$$\frac{d\sigma}{d|t|}$$
 measured for $-0.4 \stackrel{<}{{}_\sim} t < |t|_{\min}$

Exponential fit to t distribution:

$$\frac{d\sigma}{d|t|} \sim e^{-b|t|}$$

b is related to the interaction radius: $b = R^2/4$

In Regge phenomenology expect 'shrinkage': (proton gets 'bigger' with increasing energy)

So far inconclusive ...

$$b = b_0 + 2lpha'\lograc{1}{x_{I\!\!P}} \qquad x_{I\!\!P} \sim M_X^2/W_{\gamma p}^2$$

Energy dependence and $\alpha_{I\!\!P}(0)$

Example: ZEUS LPS data

Diffractive effective $\alpha_{\rm IP}(0)$

Indications for increase with Q^2 ?

 $F_2^D(x_{I\!\!P},\beta,Q^2) = \left(\frac{1}{x_{I\!\!P}}\right)^{2\overline{\alpha_{I\!\!P}}-1} \cdot A(\beta,Q^2)$

Naive expectation $\alpha_{I\!\!P}^{\rm diff.}(0)=2~\alpha_{I\!\!P}^{\rm inc}(0)$ fails in DIS region?

Fit to $x_{\mathbb{I}\!P}$ dependence:

Precise H1 Measurement of β , Q^2 dependences

Prerequisite for NLO DGLAP QCD fit:

- $-x_{I\!\!P}$ dep. taken out: factorization holds for $x_{I\!\!P} < 0.01$
- rising for $\beta \to 1$ at low Q^2
- positive scaling violations expect for largest β (gluon dominance)

NLO DGLAP QCD Fit to σ_r^D

QCD Fit Technique:

- Regge factorization (c.f. data)
- Singlet Σ and gluon g parameterized at $Q_0^2=3~{\rm GeV}^2$
- NLO DGLAP evolution
- Fit data for $Q^2 > 6.5 \text{GeV}^2$, $M_X > 2 \text{ GeV}$
- For first time propagate exp. and theor. uncertainties!

PDF's of diffractive exchange:

- Extending to large fractional momenta z
- Gluon dominated
- Σ well constrained
- substantial uncertainty for gluon at highest z
- Similar to previous fits

NLO QCD Fit: Gluon fraction and F_L^D

Integrate PDF's over measured range:

Momentum fraction of diffractive exchange carried by gluons:

$$75 \pm 15\%$$

Longitudinal
$$F_L^D$$
:
$$F_L^D \sim \frac{\alpha_s}{2\pi} \left[C_q^L \otimes F_2^D + C_g^L \otimes \sum_i e_i^2 z g^D(z, Q^2) \right]$$

NLO QCD fit: β dependence

Example data at $x_{I\!\!P}=0.003$:

- Rising behaviour for $\beta \to 1$ at low Q^2 , reflected by $\Sigma(\beta, Q^2)$
- QCD fit to data for $Q^2 > 6.5 \,\mathrm{GeV}^2$
- Extension to lower β , Q^2 with new 99 data! (blue points)
- Indication of breakdown of QCD fit at $Q^2 = 3.5 \text{ GeV}^2$
- \Rightarrow new low Q^2 data as additional constraint in future fits!

NLO QCD fit: Q^2 dependence

Example data at $x_{I\!\!P}=0.01$:

- Q^2 scaling violations well constrained by data
- Rising except at highest β
- Well reproduced by QCD fit for $Q^2 > 3.5 \text{ GeV}^2$
- New low Q^2 data (blue points) above fit at low Q^2 (not included in fit)

Diffractive final states at HERA

Motivation:

- Processes discussed here:
 - Dijet production in DIS
 - $-D^*$ meson production in DIS
 - Dijet production in photoproduction $Q^2 \sim 0$
- Test QCD factorization in diffraction:
 Use diffractive parton densities obtained
 from inclusive measurements to predict cross sections
 for final states such as jet or heavy flavour production
- High sensitivity to the diffractive gluon distribution (BGF diagram)
- Jet p_T and heavy quark mass m_c provide additional hard scale in process

Diffractive Jets in DIS

$$4 < Q^2 < 80 \ {
m GeV}^2$$
 $p_T^* > 4 \ {
m GeV}$ cone jet algorithm

Diffractive pdf's interfaced to LO Monte Carlo + parton showers

→ Good agreement with pdf's within uncertainties
 ("fits 2,3": published; "2002 fit" new

[pb/GeV] $d\sigma$ / dQ^2 $[pb/GeV^2]$ • H1 Data 10 H1 2002 σ, P QCD Fit (prel.) 10 H1 Fit 3 H1 Fit 2 $d\sigma / dp^*$ T,jets 10 10 60 80 20 40 $Q^2 [GeV^2]$ $p^*_{T,jets} \ \ [\text{GeV}]$ $d\sigma$ / $dz^{(jets)}_{P}$ [pb] dσ / dp^(IP) [pb/GeV] _{T,rem} 10 ² 10 1 0.2 0.4 2 0.6 0.8 $p_{\text{T,rem}}^{\text{(IP)}}[\text{GeV}]$ z (jets)

H1 Diffractive Dijets - x_{IP}<0.01

fit with smaller gluon)

Diffractive Jets in DIS

H1 Diffractive Dijets

Left: $z_{I\!\!P}$ in bins of $Q^2 + p_T^2$ Right: $z_{I\!\!P}$ in bins of $x_{I\!\!P}$

- Consistent with:
 - evolution of diffractive pdf's with scale
 - factorization in $x_{I\!\!P}$
- Also double differential cross sections in agreement within uncertainties
- Support for validity of QCD factorization in diffractive DIS

Diffractive D^* in DIS

Decay mode:

$$D^* \to D^0 \pi_s \to K \pi \pi_s \text{ (BR: 2.5\%)}$$

$$\eta_{max} = 3.0$$
 $x_{IP} < 0.035$
 $1.5 < Q^2 < 200 \text{ GeV}^2$
 $p_{T,D^*} > 1.5 \text{ GeV}$
 $-1.5 < \eta_{D^*} < 1.5$

Diffractive D^* in DIS

- Theory: gluon dominated pdf's from inclusive fits (ACTW), interfaced to NLO matrix elements
- Differential cross sections well described by calculation!

→ Support for QCD factorization in diffractive DIS!

Proton rest frame picture

Can also view the process in frame where proton is at rest:

- Proton fluctuates into $q\bar{q}$, $q\bar{q}g$, ... state well in advance of target proton
- Photon fluctuation scatters elastically off proton
- $q\bar{q}$: diffractive quark scattering (QPM)
- $q\bar{q}g$: diffractive gluon scattering (BGF)
 - (beyond LO relation between frames unclear)
- At high M_X and/or p_T , $q\bar{q}g$ or higher multiplicities expected to dominate

Natural relation between inclusive and diffractive cross secions.

Colour Dipole / 2-gluon exchange models

Bartels, Ellis, Kowalski, Wüsthoff

• Parameterize F_2^D in terms of: $-F_{q\bar{q}}^T \sim \beta(1-\beta)$ $-\frac{Q_0^2}{Q^2}F_{q\bar{q}}^L \sim \beta^3(1-2\beta)^2$ $-F_{q\bar{q}q}^T \sim (1-\beta)^{\gamma}$

(from wave function properties)

- Note $\beta = \frac{Q^2}{Q^2 + M_X^2}$
- $ullet \ qar q g \ ext{important at low } eta$, high M_X
- $q\bar{q}_L$ important at high β , low M_X

Colour Dipole / 2-gluon exchange models

Simplest parton level realization of colour singlet exchange: two gluons with cancelling colour charges

Diffractive cross section:

$$\frac{\mathrm{d}\sigma_{T,L}^{\gamma^* p}}{\mathrm{d}t} \bigg|_{t=0} \sim \int \mathrm{d}^2 \mathbf{r} \int_0^1 \mathrm{d}\alpha |\Psi_{T,L}(\alpha, \mathbf{r})|^2 \hat{\sigma}^2(r^2, x, ...)$$

Dipole cross section may be expressed as:

$$\hat{\sigma}(x, \mathbf{r}) \sim \int \frac{\mathrm{d}^2 \mathbf{l}_t}{l_t^2} \left[1 - \mathrm{e}^{i \mathbf{r} \cdot \mathbf{l}} \right] \alpha_s(l_t^2) \mathcal{F}(x, l_t^2)$$

Where $\mathcal{F}(x, l_t^2)$ is un-integrated gluon density in proton

- Small P_T , large size dipoles: similar to soft hadron hadron scattering
- High P_T , small size dipoles: perturbation theory may be applicable

Golec-Biernat, Wüsthoff model (GBW):

- parameters fixed by fit to $F_2(x, Q^2)$, σ^D then predicted
- Strong p_T ordering assumed

Bartels, Jung, Lotter, Kyrieleis, Wüsthoff (BJLW)

- Perturbative calculation in low- β , low- $x_{I\!\!P}$ limit
- For $q\bar{q}g$ require high p_T of all 3 partons (only for jets!)
- non- p_T ordered configurations included, need cut-off for $p_{T,q}$

Colour Dipole / 2-gluon exchange models and jet data

- BJLW able to describe data if $p_{T,q} > 1.5 \text{ GeV}$
- GBW too low (only k_T ordered configurations)

→ 2-gluon models able to reasonably describe diffractive jet/charm production in DIS

Diffractive Jets in Photoproduction

At $Q^2 \sim 0$, the photon can act as a hadron

 $x_{\gamma} = 1$: direct process DIS-like

 x_{γ} < 1: resolved process hadron-hadron like

- QCD factorization should NOT work for hadron-hadron diffraction
- Presence of second hadron may lead to additional spectator interactions which break up proton
- Suppression of diffractive events relative to DIS?

Diffractive Jets in Photoproduction

 $Q^2 < 0.01~{
m GeV^2}$, $165 < W < 240~{
m GeV}$ inclusive k_T algorithm, $p_{T,1} > 5~{
m GeV}$, $p_{T,2} > 4~{
m GeV}$

- Old and new fits overestimate data
- "fit 2" (best descr. of DIS jets) fac. 1.8 too high BUT: Uncertainties (LO comparison)

Diffractive Jets in Photoproduction

H1 Diffractive γp Dijets

Normalized cross sections:

- Shapes well described!
- Direct and resolved suppressed by same factor
- Possible explanation: Suppression depends only on size of photon $R \sim 1/Q$??

Diffractive Vector Meson Production

A very clean laboratory to study diffraction at HERA ...

Soft Pomeron model:

$$\alpha_{I\!\!P}(t) = \alpha(0) + \alpha' t$$

$$\sigma \sim (W^2)^{2(\alpha(t)-1)} \sim W^{0.22}$$

$$\frac{d\sigma}{dt} \sim e^{Bt}$$

$$B = b_0 + 4\alpha' \log(W^2/W_0^2)$$

Works for light VM, at $Q^2 \sim 0$, $|t| \sim 0$

Perturbative QCD:

Exchange of 2 or more gluons

$$\sigma \sim (xg(x,Q^2))^2$$
 steeper rise with W (rise of gluon at low x)

no or small shrinkage

Works in presence of hard scales $(M_V, Q^2, |t|)$

Vector Meson Photoproduction vs ${\cal W}$

• ρ^0 : Compatible with soft pomeron expectation

• Steeper rise with *W* for heavy vector mesons

• M_V as hard scale

Q^2 dependence of ho^0 and J/Ψ

 W^{δ} fit in bins of Q^2 :

- W slope increases with Q^2
- $-\rho^0$ at high Q^2 similar to J/Ψ at $Q^2=0$

 e^{bt} fit in bins of Q^2 :

- b related to $R_{VM}^2 + R_p^2$ ("interaction size")
- at high Q^2 or M_V : point-like interaction

Diffraction at the Tevatron – Introduction

D0 Detector

 $(n_{cal} = \# \text{ cal towers with energy above threshold})$

Central Gaps

EM Calorimeter $E_T > 200 \text{ MeV}$ $|\eta| < 1.0$

Forward Gaps

EM Calorimeter E > 150 MeV $2.0 < |\eta| < 4.1$

Had. Calorimeter E > 500 MeV $3.2 < |\eta| < 5.2)$

CDF Detector

Rapidity Gap Detectors

BBC $3.2 < |\eta| < 5.9$ Charged particles

FCAL $2.4 < |\eta| < 4.2$ Charged and neutral

Require no hits in BBC and no tower with energy above 1.5 GeV in the forward region

Diffraction at the Tevatron – Introduction

CDF roman pots:

Diffractive Processes in $p\bar{p}$

Can only discuss hard single diffraction here ...

Single Diffraction: jets,W, $b\bar{b}$, J/Ψ (CDF)

- Dijets, $E_T > 20 \text{ GeV}$, $|\eta| < 1.8$
- Rapidity gap on one side

- Estimate number of events in (0, 0) bin above background by smooth 2D extrapolation
- Acceptance correction with MC

Determine "gap fraction" $R_{jj}[SD/ND]$

Diffractive W, dijet and b at $\sqrt{s} = 1800 \text{ GeV}$

- $\begin{array}{c} \color{red} {\color{red} {\color{blue} {\color{b} {\color{blue} {$
- ✓ Diffractive dijet production $gg \to gg$, $qg \to qg$ $R_{jj}[\frac{SD}{ND}] = [0.75 \pm 0.05(stat) \pm 0.09(syst)]\%$ $(E_T^{jet} > 20 \text{ GeV}, 1.8 < |η^{jet}| < 3.5, η_1η_2 > 0, ξ < 0.1)$
- Diffractive $b\bar{b}$ production $gg \to b\bar{b}, q\bar{q} \to b\bar{b}$ $R_{b\bar{b}}[\frac{SD}{ND}] = [0.62 \pm 0.19(stat) \pm 0.16(syst)]\%$ $(p_T^e > 9.5 \text{ GeV/c}, |\eta^e| < 1.1, \xi < 0.1)$
- $\begin{array}{c|c} \hspace{-0.2cm} \hspace{-0.2$

 $R[\frac{SD}{ND}]$ is or order 1 % for W, dijet, $b\bar{b}$ & J/ψ

(c.f. 5 - 10% at HERA)

Single Diffraction: jets, W, $b\bar{b}$, (CDF)

Partonic structure of "Pomeron":

- W: sensitive to quarks $(q\bar{q} \to W^{\pm})$ only
- jets, $b\bar{b}$ sensitive to quarks and gluons

Gluon fraction in Pomeron:

$$f_q = 0.54 \pm 0.15$$

Ratio measured over predicted cross section: $D[Measured/Predicted] = 0.19 \pm 0.04$

→ Gluon fraction similar (slightly lower) than from H1/ZEUS results, but normalization too low!

Dijets with leading antiproton (CDF)

• Measure effective structure function for diffractive dijets $E^{D}(m + Q m^2)$

$$F_{jj}^{D}(x_{I\!\!P},t,eta,p_{T}^{2})$$
 where $F_{jj}^{(D)}=x[g^{(D)}+rac{4}{9}q^{(D)}]$

• Cross section:

$$\frac{d^5\sigma^{p\bar{p}\to\bar{p}jjX}}{dx_pdx_{I\!\!P}dtd\beta dp_T^2}\sim \frac{F_{jj}(x_p,p_T^2)}{x_p}\frac{F_{jj}^D(x_{I\!\!P},t,\beta,p_T^2)}{\beta}\frac{d\hat{\sigma}}{dp_T^2}$$

Motivation:

- Tests of factorization by comparison:
 - of different $p\bar{p}$ CMS energies (630 and 1800 GeV)
 - with prediction based on HERA F_2^D QCD fit pdf's
- Test of Regge factorization $F_{jj}^D(x_pom,t,\beta,p_T^2) = f_{I\!\!P/p}(x_{I\!\!P},t) \cdot F_{jj}^{I\!\!P}(\beta,p_T^2)$

Principle of measurement: Measure Ratio R[SD/ND], multiply with non-diffr. $F_{jj}^{(th.)}$

Dijets with leading antiproton (CDF)

Measured $F_{ij}^D(\beta)$:

→ one order of magnitude below expectation from HERA!

- Serious breakdown of factorization when comparing HERA vs TEVATRON
- Possible interpretation:
 2nd second hadron in initial state source of spectator interactions
 - \rightarrow suppression of diffractive events ?!
- Challenge for theory (as well as expts.)

Diffractive dijets at 630 and 1800 GeV (CDF)

• F_{jj}^D larger for 630 than 1800 GeV ("moves towards HERA")

• $R[630/1800] = 1.3 \pm 0.2^{+0.4}_{-0.3}$... but not significantly

Summary: Diffraction

- Hard diffraction studied at HERA and TEVATON
- Based on proof of QCD factorization in diffractive DIS, diffractive pdf's have been extracted
- Diffractive pdf's dominated by gluon
- Application to DIS jets, charm successfull!
- Regge factorization supported by data
- Alternative approach of 2-gluon exchange can describe jet/charm data as well
- Diffractive vector meson production ideal laboratory to study transition soft-hard
- Suppression of rate of diffractive events in photoproduction at HERA and at the TEVATRON w.r.t. HERA, one of the big challenges for theory
- TEVATRON Run 2: New roman pots for D0
- HERA Run 2: New very forward proton spectrometer (VPPS)

Diffraction is a topic which is actively pursued by many people (expts. and thy.), and it remains one of the biggest challenges in our understanding of QCD