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Abstract

We present an automated computer vision architecture to handle video and image data using the same backbone networks. We
show empirical results that lead us to adopt MOBILENETV2 as this backbone architecture. The paper demonstrates that neural
architectures are transferable from images to videos through suitable preprocessing and temporal information fusion.
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I. INTRODUCTION

By design of the evaluation metric, the recently completed
AutoCV2 challenge aimed at finding efficient models for
learning image and video datasets [1]. Consisting of five image
datasets as well as three for video processing, it provided a
range of multi-label and classification tasks such as object
recognition, cancer-type classification, and motion detection.
Goal was to develop a fully automated deep learning system
able to learn any of the given tasks as quickly as possible. The
training datasets were available for development and partici-
pants were allowed to make a limited number of submissions
to the validation datasets. Final evaluations took place based
on a set of hidden test datasets.

The Area under the Learning Curve (ALC) has been chosen
by the challenge organizers as the evaluation metric; it is in
favor of models which learn a given task quickly with low
computational complexity. Therefore, the following directions
of research seem most appropriate to improving the final
performance:

‚ Light-weight models
‚ Sample efficiency for a quick training
‚ Preventing overfitting with low regularization
‚ Meta pretraining and generic architecture search

II. MODEL

We propose a modular, unified solution that tackles both
image and video classification in order to deliver a quick
and generic system for automated deep learning with different
data types. While there is spatial information in each image,
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Fig. 1: Block diagram of the proposed automated computer vision framework.

videos add temporal information in their sequence of frames.
The backbone of the model is MOBILENETV2 [2] or EFFI-
CIENTNET [4] for extracting spatial information from images
or randomly selected consecutive frames from the video. This
building block is the same for video and image classification
and can thus be reused.

A. Image processing

To address variable image size, we first resize each image
to the average size of the whole dataset. If the images have
an edge longer than 128, they get resized such that the longer
edge has length 128 while keeping the aspect ratio constant.
Data augmentation is neglected based on empirical results
since the gained accuracy cannot compensate for the slower
training process in terms of ALC. The final proposed model
uses the MOBILENETV2 as backbone for image processing
followed by a one dimensional convolution, spatial average
pooling and three fully connected layers for classification.

B. Video processing

An information fusion building block for videos processes
the additional temporal information. Experiments were con-
ducted with 3D convolutions (spatial and temporal information
intertwined) as well as with 2D spatial convolutions followed
by 1D temporal convolutions. It was further investigated at
which depth these convolutions should be introduced to the
network: on top of the final feature maps of the backbone
model, or earlier. Instead of fixed pre-trained filters for the
convolutions of the information fusion block, we propose an
adaptive filter size and frame selection with respect to the

(---------------------------------------------------------------------------------------------, 
------------.... ,------------, ------------.... ------------.... ------------.... ------------ .... 

1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 

.....L-..L i-+------L; ___L______l_; ___L______l_; ___L______l_; 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 

1 
\_ - - - - - - - - - - - .,, 



Datatype Image Video
Dataset Chucky Decal Hammer Pedro Katze Kraut Kreatur
MOBILENETV2 Return Time 15.86s 20.35s 26.42s 25.53s 21.54s 21.29s 16.24

ALC 0.7536 0.7759 0.7562 0.7491 0.8508 0.6551 0.8678
NAUC 0.6853 0.8568 0.8538 0.8712 0.9487 0.7433 0.9521
Overfit Yes Minor No No No No No

EFFICIENTNET-MINI Return Time 75.65s 76.53s 85.51s 83.48s 83.28s 82.77s 80.61s
ALC 0.5642 0.5804 0.5896 0.5938 0.6559 0.4952 0.6543
NAUC 0.779 0.7852 0.8371 0.9043 0.9321 0.6992 0.9258
Overfit Yes Minor No No No No No

EFFICIENTNET-B0 Return Time 78.87s 77.85s 88.02s 85.57s 84.27s 85.77s 84.2s
ALC 0.5880 0.5831 0.6165 0.6101 0.6542 0.4906 0.6584
NAUC 0.8233 0.7657 0.90 0.9231 0.9548 0.6905 0.9489
Overfit Yes Yes No No No No No

TABLE I: Numerical evaluation of different network architectures trained with two fully-connected layers of size 512.

Architecture Parameters FLOPS

Backbone FullyConn Total Total
MOBILENETV2 196K 1’007K 1’203K 7.5M
EFFICIENTNET-MINI 2’303K 1’253K 3’556K 21.8M
EFFICIENTNET-B0 3’595K 1’335K 4’930K 30.1M

TABLE II: Number of parameters and FLOPS used.

sequence length of the video. For short videos (ď 48 frames),
a temporal kernel size of 3 is chosen and 4 consecutive frames
are selected. For longer videos (ą 48 frames), the temporal
kernel size was 7 and 8 frames are selected with a stride of 4.

Apart from the random key frame selection, all further
augmentation techniques slowed down the learning process,
leading to worse ALC. The same holds true for more advanced
key frame selection techniques during inference (e.g. variation
based selection). All images in the videos were resized to
80ˆ 80 if they exceeded a size of 90ˆ 90.

III. EXPERIMENTS & DISCUSSION

A. MOBILENETV2 vs. EFFICIENTNET

EFFICIENTNETS are defined as differently scaled versions
of a base model EFFICIENT-B0. They consistently outperform
state of the art architectures on ImageNet while using orders of
magnitude fewer parameters and FLOPS. This makes them a
prime candidate for our search for a fast and powerful architec-
ture. Since the base model is already considerably bigger than
MOBILENETV2, we also considered a scaled down version
using a scale factor 0.8, which we call EFFICIENTNET-MINI.
Table I shows the return time (time from the start of the
program until the end of the first test predictions), ALC, as
well as the Normalized Area Under the Curve (NAUC). In
terms of ALC, MOBILENETV2 clearly is the superior choice,
mainly being due to the slow return time of the EFFICIENTNET
based models. Overfitting is reported in Table I when the
test set accuracy (NAUC) drops continually during training.
Interesting to note is that the difference in speed between the
EFFICIENTNETS is negligible, even tough there is a significant
difference in terms of parameters and FLOPS (Table II). From
the final NAUC numbers it is clear that EFFICIENTNET-B0 is
the most powerful learner, but falls short in terms of ALC due
to speed constraints.

Validation datasets
Image Video

Idead Freddy Homer Isaac2 Formula
ALC 0.6808 0.7907 0.2957 0.6131 0.7762

Test datasets
Image Video

Apollon Loukoum Fiona Monica Kitsune
ALC 0.5776 0.8751 0.4166 0.4103 0.1666

TABLE III: Performance of the final model on hidden data.
B. Validation and test set results

The performance of the final automated deep learning
pipeline on validation and unseen test datasets is presented in
Table III. The final model uses adaptive resizing for prepro-
cessing, MOBILENETV2 as backbone, temporal convolutions
for video, and three fully connected layers as network head.
We achieve the 3rd rank for the validation datasets and an
average rank of 8 during the test phase of the challenge.

IV. CONCLUSIONS AND OUTLOOK

Our experiments show that the ALC metric, as imposed
by the challenge, is highly focused on speed and therefore
discourages the use of more complex, slow models as well
as regularization and augmentation. Accordingly, we aimed
at improving sample efficiency by using completely unreg-
ularised models. Therefore, developing alternative means to
address overfitting is a promising future direction. We see the
merit of such efficient models primarily in practical industrial
applications [3]. Moreover, we extended our computer vision
model to video processing using temporal convolutions.
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