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ABSTRACT

We present the first systematic study of multi-domain map-to-map translation in galaxy formation simulations, leveraging deep
generative models to predict diverse galactic properties. Using high-resolution magneto-hydrodynamical simulation data, we
compare conditional generative adversarial networks and diffusion models under unified preprocessing and evaluation, optimizing
architectures and attention mechanisms for physical fidelity on galactic scales. Our approach jointly addresses seven astrophysical
domains — including dark matter, gas, neutral hydrogen, stellar mass, temperature, and magnetic field strength — while introducing
physics-aware evaluation metrics that quantify structural realism beyond standard computer vision measures. We demonstrate
that translation difficulty correlates with physical coupling, achieving near-perfect fidelity for mappings from gas to dark matter
and mappings involving astro-chemical components such as total gas to H1 content, while identifying fundamental challenges
in weakly constrained tasks such as gas to stellar mass mappings. Our results establish GAN-based models as competitive
counterparts to state-of-the-art diffusion approaches at a fraction of the computational cost (in training and inference), paving
the way for scalable, physics-aware generative frameworks for forward modelling and observational reconstruction in the SKA

era.

Key words: hydrodynamics — galaxies: structure — dark matter — galaxies: stellar content — software: machine learning

1 INTRODUCTION

The spatial matter distribution of galaxies is the result of a complex
and chaotic interaction between its individual components, such as
dark matter (DM), stellar populations, (predominantly hydrogen) gas,
super-massive black holes (SMBHs), and their surrounding environ-
ment. Interactions between these components are governed by their
mutual gravitational and electromagnetic forces, and hydrodynami-
cal processes which collectively shape the structure and properties of

galaxies over cosmic time (Binney & Tremaine 2011; Tinsley 2022;

Conselice 2014; D’Onofrio et al. 2016). These interactions imprint

subtle signatures in the phase-space distribution of a galaxy, retaining

the various feedback mechanisms that have influenced its formation
and evolution (Binney & Vasiliev 2023; Bassini et al. 2024). Thus,
the physical components encode distinct aspects of galaxy evolution:

o DM haloes of galaxies dominate the gravitational potential into
which baryonic matter flows and forms visible substructure (White
& Frenk 1991; Moore et al. 1999; Frenk & White 2012).

o Stellar mass reflects the cumulative outcome of star formation
and feedback, but its distribution is temporally highly non-local
and entropic (McKee & Ostriker 2007; Kennicutt & Evans 2012;
Hwang et al. 2019), while star formation is spatially localized
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in Hy clouds within the interstellar medium (ISM; Colman et al.
2024; Schinnerer & Leroy 2024).

e Gas traces the baryonic backbone of galaxies, regulating cool-
ing, heating, and star formation through radiative feedback cycles
(Gavagnin et al. 2017; Luisi et al. 2021) and turbulence induced by
active galactic nuclei (AGNs; Biernacki & Teyssier 2018; Valen-
tini et al. 2019), supernovae (Fielding et al. 2017; Ibrahim &
Kobayashi 2023), stellar winds (Krumholz et al. 2014; Bally 2016),
galaxy-galaxy mergers (Hopkins et al. 2006; Cibinel et al. 2019),
or interaction with the intergalactic medium (IGM; Muratov et al.
2017; Poggianti et al. 2019).

e Neutral hydrogen and 21cm brightness are key observational
tracers of the ISM for low-redshift galaxies, critical for radio sur-
veys with MEERKAT, ASKAP, or the upcoming SKA-Mib (such
as WALLABY, MIGHTEE-H 1, MHONGOOSE, or the MeerKAT
Fornax Survey; Maccagni & Blok 2024; O’Beirne et al. 2025;
Maddox et al. 2021; de Blok et al. 2024; Maccagni & Serra 2025).

o Temperature captures thermodynamic states shaped by shocks,
cooling, and AGN-driven outflows (Zubovas et al. 2024; Ward
et al. 2024).

e Magnetic fields emerge from turbulent amplification and influ-
ence gas dynamics (e.g., Beck 2015; Rieder & Teyssier 2017), yet
remain poorly constrained observationally.

Recovering these domains from limited information is challenging;
observationally due to technical limitations: for most instruments,
signals beyond the local Universe — especially from HI — become
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too faint due to intrinsic dimming (Messias et al. 2024), foreground
contamination (Collaboration et al. 2025), and low-frequency RFI
(Harper & Dickinson 2018; Engelbrecht et al. 2024).

Conversely, theoretical inference of these domains has compu-
tational challenges: the understanding of the distribution of matter
in the Universe remains largely driven by numerical simulations.
Among these, (magneto-)hydrodynamical simulations present the
most principled approach to model and capture the non-linear co-
evolution of dark and baryonic matter fields across cosmological and
astrophysical scales (for recent reviews, see Crain & van de Voort
2023). However, this quality comes at steep computational costs or
forces detrimental trade-offs between resolution and volume.

To mitigate these challenges, simpler alternatives such as dark-
matter-only (DMO) simulations (e.g., Potter et al. 2017; Ishiyama
et al. 2021; Cheng et al. 2020) reproduce large-scale structure and
halo statistics at reduced cost but omit baryonic physics. Semi-
analytical models (SAMs) attempt to compensate by applying post de
facto prescriptions to approximate baryonic effects on top of DMO
outputs (e.g., Berlind et al. 2003; Somerville et al. 2008; Schnei-
der et al. 2019; Obuljen et al. 2023). While these methods enable
exploration of cosmological parameter space, they lack the fidelity
needed to capture the full complexity of galaxy-scale feedback and
morphology. In particular, their intrinsic post-hoc nature often ig-
nores the gravitational back-reaction caused by the redistribution of
baryons on the DM field.

With the proliferation of deep generative models, a complemen-
tary line of research has emerged that seeks to emulate aspects of
these simulations rather than compute them from first principles.
Recent efforts have explored enhancing simulations and augmenting
galaxy models through scalable deep learning techniques in various
ways. For instance, Perraudin et al. (2019) use scalable GANs (for
details see Section 2.3.1) to produce entire N-body 3D cubes of the
cosmic DM distribution in a multi-scale approach. Still, techniques
aiming for the full 3D reconstruction of cosmological simulations of-
ten face challenges in scaling to resolutions where individual galax-
ies can be resolved. Alternatively, Bernardini et al. (2021) employ
Wasserstein-GANs to paint baryons onto thin slices of simulation
boxes from the FIRE simulation suite. Li et al. (2021); Schanz et al.
(2024) use StyleGAN and denoising diffusion models, respectively,
to super-resolve cosmic large-scale structure predictions. Thiele et al.
(2020) applied a U-Net architecture (for details see Section 2.4) to
infer observable thermal and kinematic Sunyaev-Zel’dovich maps
of haloes from DMO simulations, explicitly linking theory to ob-
servations. Similarly, Chadayammuri et al. (2023) use a U-Net for
image-to-image translation of ILLusTRISTNG galaxy cluster haloes
to the corresponding baryonic fields.

Most studies focus on a single aspect of a simulation’s galaxy
formation or feedback model and do not fully reproduce (or harness)
all physical modes of simulated galaxies (for details see Section 2,
Equation 2).

In this paper, we introduce a novel application of deep genera-
tive models for map-to-map translation across multiple astrophysical
domains in cosmological simulations on the galaxy-scale level. In
contrast to other works, we propose a more comprehensive repre-
sentation of a formation scenario by fitting various permutations of
galaxy properties, without explicit heuristics or phenomenological
tuning. Using high-resolution magneto-hydrodynamical simulation
data from the ILLusTRISTNG suite (TNG50-1; Springel et al. 2017;
Nelson et al. 2017; Pillepich et al. 2017; Marinacci et al. 2018;
Naiman et al. 2018), we systematically compare conditional gener-
ative adversarial networks (GANs) and diffusion models under uni-
fied preprocessing and evaluation. Our approach goes beyond prior
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work by jointly addressing multiple domains and introducing physics-
aware metrics — such as asymmetry, clumpiness, concentration, and
power spectra — that assess structural realism and astrophysical fi-
delity beyond standard computer vision measures. We show that
GAN-based models can achieve performance comparable to diffu-
sion models at a fraction of the computational cost (in training and
inference), in particular for map-to-map translations involving astro-
chemical components. Moreover, a set of deep generative models
including all domain translations provides a comprehensive repre-
sentation of a galaxy’s formation scenario (for details see Section 2
and Equation 2). Finally, the generative models establish a bridge
between theory and observation by incorporating domains that are
directly observable, such as 21-cm brightness, into the translation
process. This is particularly relevant for upcoming large-scale radio
surveys with the Square Kilometre Array (SKA; Braun et al. 2015;
Staveley-Smith & Oosterloo 2015) telescopes, which will probe the
cosmic distribution of H1 through 21cm emission. By enabling the
reconstruction of astrophysical quantities from observational proxies
and forward modelling of instrument-specific effects, our approach
provides a scalable pathway to interpret SKA data within the context
of galaxy formation scenarios.

The remainder of this paper is structured as follows: Section 2
details our methodology, models, evaluation metrics, and data, Sec-
tion 3 presents the results, and Section 4 discusses implications and
future directions.

2 DATA & METHODOLOGY

Our work aims to address the limitations identified above by leverag-
ing high-resolution simulation data as the foundation for a generative
modelling approach. To this end, we require a dataset that captures
the full complexity of baryonic and DM interactions (i.e. magneto-
hydrodynamics) at galaxy scales. In the following Section 2.1, we
detail the selection criteria and preprocessing steps applied to con-
struct our dataset of galaxy maps.

2.1 Dataset

The ILLusTRISTNG project is a series of publicly released, cosmolog-
ical magneto-hydrodynamical simulations of galaxy formation, run
with the AREPO (Weinberger et al. 2020) moving-mesh code (Springel
et al. 2017; Nelson et al. 2017; Pillepich et al. 2017; Marinacci
et al. 2018; Naiman et al. 2018). Each simulation self-consistently
solves the coupled evolution of DM, cosmic gas, luminous stars, and
SMBHs. The TNG50-1 simulation was run with a total of 2 x 21603
resolution elements, a DM mass resolution of 3.1 x 10°> Mg /A, and a
baryon mass resolution of 5.7 x 10* Mg /h, providing a rare combi-
nation of large volume and fine resolution in a simulation released to
the public. Galaxies were selected from snapshots between z = 1 and
z = 0 with a required minimum number of resolution elements of
104, to ensure sufficient resolution even for larger satellite and dwarf
galaxies.

Projections onto images for each selected galaxy were performed
in multiple domains (galaxy properties {):
DM mass (pm; column density)
stellar mass (sTars; column density)
total gas mass (Gas; column density)
H1 gas mass (H1; column density)
(mock) 21-cm brightness temperature (21cm)
gas temperature (TEMP)
magnetic field strength (BFIELD)



Table 1. The preprocessing transformation parameters: ¢ is the normaliza-
tion constant (in the respective units of the corresponding maps) and y the
power scaling. The Boolean b deciding whether the transformation maps to
a symmetric or non-negative interval was always 1 for diffusion models and
0 for GANS.

DM STARS GAS HI 2lcM  TEMP  BFIELD
c 2x10' gx10'" 100 108 165 108 107!
Y 8 16 8 8 8 8 8

The projections extend to two half-mass radii of a galaxy’s total
gas mass, ensuring each domain image has the same spatial reso-
lution for a given galaxy. All but the 21-cm brightness temperature
maps are directly simulated quantities; the former were generated fol-
lowing Villaescusa-Navarro et al. (2018). The map projections were
performed using an adapted version Pylians3 code (Villaescusa-
Navarro 2018). The resulting dataset of multiple domains counts
504,000 512x512 images in total (72,000 images per domain), pro-
duced from roughly 3000 galaxies per snapshot (6 in total), each
galaxy randomly rotated (on all axes) four different ways before
projection for data augmentation. Note that the first iteration of the
dataset contained fewer samples with a slightly higher average total
halo mass; this dataset was used where explicitly stated in Sec-
tion 2.7 and 3.

In summary, the dataset contains a set of galaxy projections in
multiple domains (different physical modes of a galaxy) which jointly
approximate the fiducial TNG model, i.e. ILLusTRISTNG’s formation
scenario.

Deep learning networks often work best on non-peaked data dis-
tributions, numerically standardized in intervals between [0, 1] (for
uniform priors) or [—1, 1] (for Gaussian priors). Inspired by com-
mon transformation used in the high-energy physics domain (see e.g.
Finke et al. 2021), we use the following scaling for all maps

1

x:(b+1)-(%‘)?—b (1)

where ¢ # 0 is the normalization constant (around the maximum
of the data distribution), y ~ U{0,0(10)} the power scaling, and
the Boolean parameter b € {0, 1} depending on whether the interval
should map to [0, 1] or [—1, 1]. The exact values for the y parameters
were found via grid search (such that the median of the dataset
distribution is > 0.3 and < 0.6) per domain as listed in Table 1;
b was 0 for all models with a uniform prior (GANs) and 1 for all
models with a Gaussian prior (diffusion models). This transformation
normalizes the data ranges and stabilizes the variances in the data,
making them more Gaussian-like.

2.2 Galaxy formation scenario

Capturing the complex interplay between baryonic components and
DM distributions at the galaxy scale is computationally the most ex-
pensive task in any numerical simulation. Often, a trade-off between
simulation size and resolution is required to make a hydrodynamical
treatment even feasible. Additionally, surrogate techniques, so-called
sub-grid models, are employed to capture effects of baryonic com-
ponents below the resolution limit. The ill-constrained parameters
of such sub-grid models are calibrated to match observed properties
at the simulated scales, leading to degeneracy and difficulties in the
interpretation of outcomes (cf. Crain & van de Voort 2023).

For this reason, different simulation suites produce similarly re-
alistic galaxies with a wide variety of formation “recipes”. Notable,
publicly available (and thus for this work relevant) examples of such
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suites are the EAGLE (Schaye etal. 2014; Crainetal. 2015; McAlpine
et al. 2016), HorizoN-AGN (Dubois et al. 2014), ILLustrisTNG
(Springel et al. 2017; Nelson et al. 2017; Pillepich et al. 2017; Mari-
nacci et al. 2018; Naiman et al. 2018), and SIMBA (Davé et al. 2019)
suites.

The summary of all these physical effects characterizing a simu-
lated population of galaxies, we will abstractly describe as a galaxy
formation scenario ®. In Bayesian terms, a simulation describes
galaxy samples from a population I'; by the marginalization

P(L|®) = )" P(T|{)P(L|D) @)

LeQ

where { € Q represents a galaxy property from the set of galaxy
characteristics Q. There will also be nuisance parameters v which
lead to the expression of a galaxy distribution but are not related to
any physical galaxy property, such as orientation

P(L|0) = ) P(TIZ,v)P(v). 3)

A major inconvenience of simulations is the impracticality of
drawing new samples from the galaxy population g ~ P(I'|®), as
this would require re-running an entirely new simulation at repeated
computational expense. We pose that one or a set of deep generative
models can properly encapsulate a simulation’s formation scenario
¢ by learning individual galaxy properties £, enabling in-painting a
learnt formation scenario onto DMO simulations.

Recent advancements in deep learning techniques have demon-
strated their efficacy in performing generative tasks that involve
complex functional mappings between images. Given that simulated
galaxies are typically reduced to 2D for comparison with obser-
vational data, this study will focus on image-based deep learning
techniques.

2.3 Deep generative modelling

As general function approximators, deep learning neural networks
have proven extremely useful for data processing across various sci-
entific disciplines (Hornik et al. 1989; Goodfellow et al. 2016). Their
ability to beat the curse of dimensionality allows for extraction of
subliminal signals from complex data, finding hidden patterns or
concepts that are difficult to (manually) formalize. Especially deep
learning generative models have demonstrated unparalleled results,
creating high-quality synthetic data, modelling complex systems and
processes (Whang 2023; Bengesi et al. 2024). The goal of deep gener-
ative models is to learn an implicit (true) data distribution from which
a finite number of samples is available for training (cf. Bond-Taylor
et al. 2022); this usually means fitting an over-parametrized model
po(x) = p(x) such that new samples £ ~ pg(x) can be drawn and/or
the likelihood pg(x) be evaluated. Conditional generative models
additionally include control variables ¢ which guide the generative
process such that pg(x|c) = p(x|c). Image-to-image translation is
a particular application of conditional generation, where an input
image of one domain is transformed into a corresponding output
image in a different domain (Pang et al. 2022); in this study, the
domains are defined by individual galaxy properties ¢ = ¢ where
¢ € Q (see Section 2.1). Examples of image-to-image tasks include
style transfer, image colourization, denoising, super-resolution, or
semantic segmentation. Within the sciences, such tasks have been
adapted in and across many disciplines, showing impressive perfor-
mance in modelling the distribution of atomistic systems, proteins,
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and biomolecules (e.g., Ingraham et al. 2023; Rives et al. 2021;
Schneuing et al. 2024; Rgnne et al. 2024), particle jets (e.g., Leigh
etal.2024; Golling et al. 2024), or for medical imaging enhancements
(e.g., Amirian et al. 2024; Bullock et al. 2019).

The conditional probability distributions approximated by these
models directly correspond with the terms in Equation (2); thus
such methods are particularly well-suited for this investigation. We
examined GAN and diffusion-based approaches, as detailed in Sec-
tion 2.3.1 and 2.3.2. Both approaches are known to produce high-
quality samples. While diffusion models are considered state-of-the-
art in scientific applications of image generation, they are intrinsi-
cally inefficient in their inference process, even when applied in latent
space, even more so in pixel space (cf. Dhariwal & Nichol 2021).
On the other hand, GANs can efficiently generate samples with a
single forward pass, but generally have poorer training stability and
distribution coverage. Therefore, we investigated both approaches
for this work’s use case and compared their results, advantages, and
challenges. As a secondary objective, we assess whether GAN-based
models can achieve performance comparable to diffusion models, as
this would substantially reduce computational costs and enable scal-
able deployment in large-scale simulation pipelines. Demonstrating
such parity would not only accelerate inference but also substantially
reduce the time required to iterate over all image translation direc-
tions, enabling more comprehensive exploration of domain mappings
within practical computational budgets.

2.3.1 Generative Adversarial Networks

GANs are two-component models where a generative network, the
generator G, and a discriminative network, the discriminator D,
compete in an adversarial game; first introduced by Goodfellow et al.
(2014). G aims to map' out of an implicit distribution pg(z) to
samples indistinguishable from the true data distribution p(x), while
at the same time D is optimized to distinguish between generated
samples from pg and real samples from the true data distribution.
The adversarial game simultaneously invokes the minimization of the
objective Lagversarial (G, D) by G and the maximization of the same
by D. These seemingly diametrical goals give rise to an efficient
mechanism which optimizes G — G* leading to plausible, high-
quality samples

G" = arg mci;n mgx Ladversarial (G, D) . S

This effectively eliminates the need to formulate an explicit loss
function, as the discriminator will take that role; in other words, the
loss function is learnt.

Isola et al. (2016) furthermore demonstrated a conditional version
(cGAN) of this adversarial game as a general-purpose solution to
image-to-image translation dubbed pix2pix. Although very similar
to the classical GAN formulation, both cGAN networks are addi-
tionally conditioned on an input image x. The generator learns a
mapping from input to output image domain space G : (x,z) — y.
The discriminator is also additionally shown the input image with
the corresponding generator output G (x, z). This subtly changes the
interpretation of its task from originally judging the realness of gen-
erated images to a judgment on the plausibility of the domain map-
ping. Accordingly, the GAN optimization objective is constructed as
follows

Legan = Ex y [log D(x, y)] + Ex ; [log (1 - D(x,G(x,2))]  (5)

! in a classical GAN the input z is typically a noise variable z ~ N/(0, )
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where the first term is the average prediction strength of the dis-
criminator when the images are sampled from the data distribution.
The second term establishes the actual adversarial game, describing
the average discriminator’s prediction strength when the images are
sampled from the generator.

Moreover, Isola et al. (2016) proposed to mix the GAN objective
with a traditional L, loss term

‘LLP = IE’x,y,z [Ily - G(x, Z)Hp] (6)

where p = 1 was found to be optimal by the authors whereas p = 2
lead to blurriness in the predicted images.
The final adversarial objective is then given by

[«adversarial(G, D) =L (G) +4- LCGAN(G7 D) @)

where the objective weighting factor A can be treated as a fixed
hyper-parameter or adaptively tuned similar to Esser et al. (2020).

Finally, note that the noise variable z is necessary to learn a stochas-
tic mapping, matching a distribution other than a delta function.
However, Isola et al. (2016) have found noise input ineffective as
c¢GAN models tend to simply ignore the noise and suggested to use
dropout at test time instead to capture the full entropy of the modelled
conditional distributions.

In practice, GANs are notoriously difficult to train despite their
proven ability to generate high-quality samples. Two major chal-
lenges are vanishing gradients and mode collapse, which can be
mitigated through architectural and objective modifications. Archi-
tectural strategies include residual skip connections to improve ra-
dient flow (He et al. 2015), experimenting with normalization lay-
ers (batch loffe & Szegedy (2015), group Wu & He (2018), layer
Ba et al. (2016), or none), and refining deconvolution operations
near the generator output (Odena et al. 2016). Objective-based ap-
proaches involve alternative loss formulations for L.gan(G, D),
such as DCGAN (Radford et al. 2015), LSGAN (Mao et al. 2016),
or Wasserstein-GAN variants (WGAN, WGAN-GP; Arjovsky et al.
2017; Gulrajani et al. 2017). Due to the minimax nature of GANS,
losses often oscillate rather than converge, making diagnosis diffi-
cult. Overall, balancing generator and discriminator remains inher-
ently unstable (cf. Arjovsky & Bottou 2017), requiring alternating
gradient updates or separately scheduled learning rates.

In this study, we closely followed the implementation of the
Pix2Pix model by Isola et al. (2016), including the aforementioned
techniques and best practices. The generator is implemented as a
standard U-Net (Ronneberger et al. (2015); architecture modifica-
tions are detailed in Section 2.4), paired with a PatchGAN discrim-
inator which evaluates the plausibility of an image in sub-regions
rather than a classical full-image discrimination. The discriminator
can be restricted to enforce the correctness in local patches because
the L1 loss in Equation (7) motivates the model to correctly predict
low-frequency features in images, ultimately leading to more details
in generated samples.

2.3.2 Diffusion-based models

Diffusion models have emerged as the de facto state of the art in com-
puter vision (CV), surpassing in stability, distribution coverage, and
arguably in sample quality models like GANs, normalizing flows
or variational auto-encoders. They, colloquially speaking, learn to
iteratively denoise a corrupted version of the data. More precisely
speaking, diffusion models include a forward (noising) process which
is designed to push samples off the data manifold and a backward
(denoising) process for which a model is trained to produce trajecto-
ries back to that data manifold, generating plausible samples. There



are various framings for diffusion models, leading to slightly differ-
ent expressions for these forward and backward processes. Here, we
give a high-level overview of the formalisms relevant to this study.

Following Ho et al. (2020)’s description of Denoising Diffusion
Probabilistic Models (DDPMs), the forward and backward processes
take the form of Markov chains. The forward process starts from
the input xo and step-wise transitions to latent variables {xi, ..., xr}
(and vice versa for the backward process). Each forward transition
at a particular time step only depends on the previous step and its
probability is parametrized as a diagonal Gaussian

q(x¢lxi—1) = N(xp; V1 = Bexi—1, BiD) 3)

where the variance is 8; € (0, 1) and typically scheduled as ;-1 <
B:. In the limit of infinitesimal step sizes, the true reverse process
has the same functional form as the forward process, a well-known
fact from Brownian diffusion in physics (see Equations 76 and 77 in
Feller 1949). Thus, learning to approximate the backward process for
small (enough) step sizes becomes feasible and can be analogously
parametrized as

po(xi-tlxe) = N(x—13 o (xe, 1), Zo (x1, 1)) . 9

Like the forward process, the backward process is a Markov chain
for which its joint probability is given by the product of individual
step conditionals

T
po(xor) = p(x7) rl Po(xi—1lxs) (10)
r=1

where the marginal probability is a pure Gaussian p(xr) = g(x7) =
N (x7;0,10).

The actual objective of the diffusion process, the sample proba-
bility pg(xo), is generally intractable, as it would require marginal-
ization over all possible trajectories. However, akin to latent space
models such as VAEs (Kingma & Welling 2013), an evidence lower
variational bound (ELBO) can be estimated (see Kingma et al. 2021;
Sohl-Dickstein et al. 2015, and references therein)

log po(xo)

> E, logp(xT)+ZlogM (11
248 (i)

> B [log po(xolr1)] — Eq [Dxr.(q(xrlxo)llp(xr)]
= > By [Dki(q(xitlx, x0)l[po (xe-11x:)] (12)

t>1

where Dk denotes the Kullback-Leibler divergence. The lower
bound (11) can have high variance and hence limited training effi-
ciency and stability, compared to (12). Note that the first term in (12)
ensures sample reconstruction quality while the second term matches
the priors (assumed Gaussian), analogous to a classical VAE. The
third summation term is known as the diffusion loss Lgiffusion and
can be calculated in closed form given xg is known (as it is during
training).

The reverse step pg (x;—1|x;), that is the neural network, has vari-
ous implementations. Ho et al. (2020) observed more stable training
when the network only predicted 1y and assumed the variances to be
time-dependent constants X () = B,1. Through the reparametriza-
tion trick, it is also possible to predict the added noise € through a
neural network €y rather than the mean of the Gaussian. Other forms
of diffusion models directly predict the original data point xg, or
some combination of both (Salimans & Ho 2022).

In any case, the diffusion loss in Equation (12) can be shown to
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generally reduce to

Laiffusion = Be~n(0,1),0~Ujo 1 [v;,(Dll€ = €a (x:, NI (13)

where y7,(7) is an optional weighting pre-factor (with learnable
bounds) evaluated via automatic differentiation. The noise sched-
ule y,,(¢) also has various forms with the simplest schedule linearly
increasing between two extremal bounds 77 = {¥min, Ymax }-

For conditional generative tasks, conditioning variables ¢ (here
images of the original domain) are fed as additional inputs to the
network during training €g(x;,?,c). The conditioning can be fur-
ther enforced by guiding the diffusion process, pushing the back-
ward process in the direction of the gradient of the target condition
probability (Ho & Salimans 2022). Classifier-free diffusion guid-
ance achieves this through a modified training procedure by lin-
early combining null-labelled @ diffusion and conditioned diffusion
Eg(xs,t,¢) = €9(xs,1,0) + s(€g(xs,2,¢) — €9(xs,1,0)) given a guid-
ance strength s. At inference time, samples can be artificially pushed
towards the conditional direction by increasing the guidance strength
s> 1.

In this study, various noise schedules and objective variations have
been investigated, see Section 2.7 for details.

2.4 Neural Network Architectures

All network implementations can be found in our chuchichaestli
package? published on PyPI and publicly available on €) GitHub.
Here, we give an overview of their architecture, but for details we
refer to the correspondingly listed sources.

U-Net. GAN as well as diffusion models implement their gen-
erative networks using the U-Net convolutional architecture, first
introduced by Ronneberger et al. (2015). It was initially designed for
segmentation of biomedical images, but has since been adapted to
generative tasks for many other scientific fields (e.g., Bianco et al.
2025; Andersson et al. 2019; Yao et al. 2018). Its basic structure
consists of a contracting (encoder) and an expansive (decoder) path,
resulting in characteristically U-shaped graphs. While the architec-
tural blocks in a U-Net have seen various updates since its inception,
the basic encoder level follows the typical convolutional network
structure with repeated 3x3 convolutional layers each followed by
activations (LeakyReLU or ReLU) and a downsampling layer (a
convolutional layer with stride 2); more recent versions additionally
include residual block connections to improve gradient flow (He et al.
2015). With multiple levels, this leads to image compression, feature
extraction, and ultimately representational learning. For image-to-
image domain translation tasks, the structure of the decoder blocks is
typically mirrored using deconvolutional layers to recover the input
image resolution. Due to the repeated application of downsampling
convolutional operations, spatial information is lost in deeper levels
of the encoder. To this end, U-Nets additionally include skip con-
nections between the corresponding levels which directly pass the
encoder output information, concatenated to the output from lower
decoder levels, and effectively integrate spatial information in the
expansive path of the U-Net.

The basic U-Net structure in this work resembles the implementa-
tion by Isola et al. (2016) with a few notable updates:
o we opted for Swish activation functions (Ramachandran et al.
2017) instead of ReLU and LeakyReLLU

2 release version v0.2.13
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e cach block optionally includes a self-attention (Vaswani et al.

2017) or convolutional self-attention layer (Yang et al. 2019)

e dropout regularization in hidden layers (with a probability of 0.2)

Self-attention enables the handling of global interactions between
pixels regardless of their relative position in the image and nicely
complements the inherently local convolutional pixel treatment.
Originally applied to language tasks, it quickly became an essential
ingredient of any state-of-the-art neural network for image process-
ing. However, since attention increases the computational complex-
ity quadratically with sequence length, transformer networks become
quickly infeasible, especially for high-dimensional data like images.
Parmar et al. (2018); Weissenborn et al. (2019); Ho et al. (2019) pro-
posed various solutions to this problem which usually entail reducing
the receptive field and long-range interactions as compromise. We
tested such convolutional self-attention layers® in our U-Nets, but
have not noticed any significant improvements in performance or
efficiency over classical self-attention (see Section 3).

Moreover, for the use in diffusion models the U-Net additionally
contains a sinusoidal time embedding (aka positional embedding)
to keep track of the time step in the diffusion process. The time
embedding is injected in all residual blocks via linear projection
layers whose outputs are added to the blocks’ first convolutions.

PatchGAN. Asintroduced in Section 2.3.1 a PatchGAN is a patch-
based discriminator which models an image as a Markovian field
where each probability depends on neighbouring patches within a
patch diameter. This concept was initially explored by Li & Wand
(2016) in the context of texture synthesis and later implemented
for general image-to-image translation by Isola et al. (2016). Our
discriminator networks for adversarial training were adapted from
Isola et al. (2016) with a 70x70 pixel receptive field. The imple-
mentation follows a simple convolutional block pattern consisting of
batch normalization, activation (LeakyReLU), and two-dimensional
downsampling convolutional layers.

2.5 Image-based evaluation metrics

To evaluate the similarity and quality of generated galaxy maps dur-
ing and after training these neural networks, we first employ a set
of widely used metrics from the CV domain. These metrics provide
a baseline for assessing pixel-level accuracy (distortion), perceptual
fidelity, and statistical realism in image synthesis tasks. While they
are not tailored to astrophysical data, they offer valuable insights into
the generative performance of deep learning models and can be used
for initial hyper-parameter tuning.

Mean Squared Error (MSE) quantifies the average squared dif-
ference between corresponding pixels in two images

N
1
MSE (x,%) = — > (x; = £)? (14)
N 4
i=1
where x; and £; are pixel values in the reference and generated images,
respectively, and N is the total number of pixels.
It is sensitive to small pixel-level deviations and is often used to
measure reconstruction accuracy. However, it does not account for
perceptual or structural similarity.

3 where key, query, and value representations are mapped using two-
dimensional convolutions instead of fully connected linear layers
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Peak Signal-to-Noise Ratio (PSNR) expresses the ratio between
the maximum possible pixel value and the power of the error signal
PSNR (x, %) = 10 - log,, (

C2
MSE (x,)?)) (15)

where c is the maximum pixel value range (typically 1 for normalized
images, or 2 if the data range from -1 to 1).

Higher PSNR values indicate better fidelity. It is commonly used
in image compression and denoising tasks.

Structural Similarity Index (SSIM) evaluates perceptual simi-
larity by comparing luminance, contrast, and structural information
between two images (Wang et al. 2004):

Cuxpz + k1) 2oxz + k)
(,u% +,u§c + kl) (0')% + 0'?6 + kg)
where u, o, and o3 are the means, variances, and covariances of
the images, and k|, k; are stabilizing constants.

SSIM ranges from O to 1, with higher values indicating greater

structural similarity. It is more aligned with human visual perception
than MSE or PSNR.

SSIM (x, %) = (16)

Fréchet Inception Distance (FID) measures the distance between
the distributions of real and generated images in a feature space
extracted by a pre-trained neural network (such as Szegedy et al.
2015):

FID = |1y — pg|® + Tr (zr + 3, - 2(2,2g)1/2) (17)

where (u,, Z,) and (g, o) are the mean and covariance of real and
generated image set features.

Lower FID scores indicate that the generated images are statis-
tically similar to real ones in terms of feature distribution. FID is
widely used to evaluate generative models such as GANs and diffu-
sion models. However, since it is evaluated with model backbones
typically pre-trained on ImageNet (Deng et al. 2009, an extensive
dataset consisting of 3-channel, natural images), its application on
scientific maps may be problematic. In our use case, each map is
replicated on 3-channels before its features are extracted and thus
does not exhibit the same colour variation as for natural images.
Moreover, critics argue that FID’s reliance on ImageNet-trained em-
beddings and its assumption of Gaussianity in high-level feature
space render it ill-suited for domains with drastically different image
statistics, such as scientific or medical imaging (Kynkédnniemi et al.
2022; Jayasumana et al. 2023). In contrast, some studies have shown
that using ImageNet-trained features can still correlate better with
human perception than domain-specific feature extractors, even in,
e.g., medical image synthesis tasks (Woodland et al. 2024). In any
case, these findings caution against uncritical use of FID in non-
natural image domains and suggest careful validation supported also
by alternative metrics.

The metrics mentioned above serve as a foundational measures
for evaluating image-to-image translation tasks. While they offer
general-purpose assessments of distortion and perceptual image qual-
ity, they do not capture the domain-specific physical properties of
galaxies. To address this, we complement them with a set of astro-
physical metrics tailored to the structural and morphological charac-
teristics of galaxy maps.

2.6 Astrophysical evaluation metrics

To assess the physical plausibility of the generated galaxy maps
beyond pixel-wise similarity, we introduce a set of astrophysically



motivated metrics. These metrics are designed to quantify structural,
morphological, and distributional properties of galaxies, enabling
a more rigorous comparison between generated and ground truth
samples. Each metric captures a distinct aspect of galaxy morphology
and mass distribution, reflecting the underlying formation scenario.

Asymmetry Error (AE). Asymmetry evaluates the rotational
symmetry of a galaxy map by comparing it to its 180° rotated coun-
terpart (centred on the galaxy). This is a standard morphological
indicator in observational astronomy (first introduced by Schade
et al. 1995), and often used to identify signs of mergers, tidal in-
teractions, or structural disturbances. It is typically defined as part of
the concentration-asymmetry-smoothness parameter system (CAS;
Conselice et al. 2000; Conselice 2003). Here, we define the AE in a
slightly simplified adaptation as the difference between the normal-
ized asymmetry of a ground truth 7, and generated map /I,

180°
Zij |1r,ij - Ir,ij | Zij Ig,ij g.ij
2ij i Zij gl
where 1'8% are the 180°-rotated map correspondents. Higher asym-
metry errors with respect to generated maps indicate discrepancies

in structural symmetry which may indicate unrealistic morphology
or artefacts.

_[180°)

AE(1y, Ig) =

18

Smoothness/Clumpiness Error (SCE). The so-called clumpiness
quantifies the presence of small-scale structures such as star-forming
regions or dense gas clumps (cf. CAS parameter system; Conselice
et al. 2000; Conselice 2003). We calculate a proxy by subtracting
a smoothed version of the map from the original and measuring
the positive residuals, to avoid biasing the result through smoothing
artefacts and removal of diffuse regions.

2ijmax(| 1l ij — Sr.i51,0) _Zij max(|lq.ij — Sg.ijl,0)

SCE(I, I,) =
8 Zij 1rijl Zij Hgijl
(19)

where S is a smoothed (Gaussian blurred) version of the correspond-
ing map /. A high SCE value may indicate excessive noise or unreal-
istic fragmentation, while a low error suggests smooth, well-resolved
distributions. This metric is particularly relevant for evaluating the
realism of baryonic, frictional components like gas and stars and
substructure in DM haloes.

Centre-Of-Mass Distance (COMD) measures the Euclidean dis-
tance between the centre of mass of the generated map and that of
the ground truth. The center of mass of a galaxy reflects the spatial
alignment of its component distribution.

2ij Xijlr.ij _ 2ijXijlg.ij

Yijlrij 2ijlg.ij
where x;; are the spatial coordinates of distribution elements (pix-
els). Misalignment may indicate translation artefacts, structural in-
consistencies, or failure to preserve spatial coherence. This metric is
particularly important for tasks involving domain translation where
positional accuracy is critical.

COMD(I,, I,) = (20)

2

(Cumulative) Radial Curve Errors (CRCE/RCE). This metric
compares the radial intensity or mass profile of the generated map to
that of the ground truth. The radial profile is computed by averaging
pixel values in concentric radial bins centred on the galaxy’s centre
of mass. The Radial Curve Errors capture deviations in the spatial
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distribution of matter, such as incorrect central concentration or scale
mismatch. It is essential for validating the structural integrity of
generated galaxies. As a complement, the analogous comparison of
cumulative radial distributions of generated and ground truth maps
measures cumulative content deviations at a given radius. Errors
from cumulative profiles are sensitive to global mass conservation
and spatial allocation.

Power Spectrum Errors (PSE) compares the radially averaged
2D power spectra (i.e. squared magnitude of the Fourier coefficients
at each frequency) of two maps. For each map, we compute the
two-dimensional discrete Fourier transform and derive the power
spectrum as the squared modulus of the Fourier coefficients. The
resulting two-dimensional power spectrum is then radially averaged
in Fourier space to obtain a one-dimensional power spectrum curve
P(k) which characterizes the distribution of power as a function
of spatial frequency. Finally, the normalized power spectrum curve
residuals can be reduced by means of summation or averaging. This
approach assesses similarity in spatial structure, texture, and partic-
ularly characteristic, second-order (filamentary) scales, independent
to normalization, translation, or rotation. The PSE is especially use-
ful when validating a model’s accurate reproduction of multi-scale
spatial features.

The aforementioned metrics collectively provide a robust frame-
work for evaluating the astrophysical realism of generated galaxy
maps. They complement traditional image similarity metrics from
Section 2.5 by incorporating domain-specific knowledge and phys-
ical constraints, thereby enabling a more meaningful assessment of
generated samples.

Finally, beyond pixel-level and morphological assessments, we
also perform an inter-model consistency analysis based on integrated
physical quantities (such as e.g. average magnetic field strength or to-
tal mass content). By substituting individual components with model
predictions while keeping others at ground truth, we quantify biases
and scatter, as well as cross-source disagreement for a fixed target
domain. These metrics reveal whether different translation models
preserve masses and energy globally and maintain physically plausi-
ble component fractions, independent of local image fidelity. Further-
more, they test whether models can be chained in cycles, potentially
avoiding the need to train all model translation permutations if the
goal is to complete a physical model from an arbitrary galaxy prop-
erty. This approach provides a complementary, physically grounded
perspective on model performance, ensuring that generated maps re-
spect fundamental conservation principles and astrophysical scaling
relations.

2.7 Experiments

Given that both generative methodologies described in Sections 2.3.1
and 2.3.2 employ U-Net architectures as their backbone, it is essen-
tial to optimize the architectural hyper-parameters for the specific
characteristics of the dataset. However, exhaustive hyper-parameter
searches across all possible configurations are computationally pro-
hibitive, especially for generative models. We therefore constrain
our ablation studies to architectural components that have demon-
strated the most significant impact on conditional image generation
performance. For these ablations, a coarse grid search across diverse
optimizers, learning rates, and loss term weights have been carried
out beforehand to find good values/choices. The hyper-parameters
for the final network architectures used in Section 2.8 have been
optimized using the Optuna and Ray Tune frameworks.
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Training. All models were implemented in PyTorch. The exper-
iments were conducted on Nvidia V100/A100/H100/H200 GPUs
depending on the specific VRAM requirements. Adam optimizers
(separate ones in the case of GAN-based models) with 8; = 0.9 and
B2 = 0.999, and weight decay of 10~ were used. Unless otherwise
stated, the maximum learning rate was set to 5 x 10~ for generators
and 1 x 107> for discriminators (where used), with a one-cycle pol-
icy schedule (following Smith & Topin 2017). It provides a smoother
warm-up phase at lower learning rates, a ramp up to the maximum
learning rate, and a cosine-annealing phase to 10™* of the maximum
value. When attention layers are included, this schedule was found to
lead to less instabilities during GAN training. All model experiments
were trained for 30 epochs with a batch size of 8. The datasets were
split into 85% training, 10% validation, and 5% test sets, ensuring
that galaxies from the same halo did not appear in multiple splits.
All reported metrics for experiments in Section 2.7 were evaluated
on the validation set whereas astrophysical validation was performed
on the test set, and reported after the final epoch.

U-Net size experiments. Previous work has identified model ca-
pacity, defined by depth (number of U-Net levels) and width (number
of hidden feature channels) as a key factors of generative fidelity
(Ronneberger et al. 2015; Ho et al. 2020; Isola et al. 2016). Addition-
ally, the choice of normalization layers (Dhariwal & Nichol 2021),
and the inclusion of residual and attention mechanisms (Zhang et al.
2018a; Dhariwal & Nichol 2021), have consistently shown to en-
hance both training stability and output quality. In contrast, other
design choices, such as the specific up-sampling scheme or minor
variations in skip connections, tend to yield marginal improvements
and diminishing returns. To systematically assess these factors, we
first examine the impact of model capacity on generative perfor-
mance, limiting experiments to high-impact components to keep
computational costs tolerable.

Table 2 summarizes the U-Net configurations tested in this ini-
tial set of targeted experiments. Each experiment varies only the
architectural parameters under investigation, while all other train-
ing settings are held constant. For bench-marking, we selected the
GAas—DM translation task, which exhibited intermediate difficulty
across all domain pairs in preliminary tests.

All models were trained with adversarial loss for 30 epochs using
the standard discriminator configuration (as described in Section 2.4),
with a warm restart technique for stochastic gradient descent and a
cosine annealing learning rate schedule (Loshchilov & Hutter 2016).
Initial learning rates were set to 10~ for the generator and 5 x 1073
for the discriminator.

The results of the U-Net size ablation study are summarized in
Table 3. Among the tested configurations, MEDIUMU (64 channels, 4
levels) consistently achieved the best overall performance across most
evaluation metrics. Notably, the SSIM metric seemed to saturate in all
tests quickly, indicating most U-Net configurations yield structurally
similar outputs to the ground truth, but may lack sensitivity with
smooth, high-resolution distributions like those from simulations and
may not capture subtle differences fine-grained textures and localized
features.

Deeper and larger U-Net variants started exhibiting artefacts and
over-fitting that degraded perceptual quality of generated samples
evident by higher PSNR values, but at the cost of increased FID.
Moreover, larger models exhibited signs of mode collapse, with un-
reliable metric results. Conversely, the shallower and smaller per-
formed comparably or worse in PSNR and SSIM but suffered from
a substantially worse FID, suggesting insufficient capacity to model
the full complexity of the domain mapping.
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Table 2. Various U-Net configurations with varying sizes in depth and width
that were tested. “Width” refers to the base number of feature channel in the
first U-Net layer, whereas “Depth” is the number of levels between down- and
up-sampling layers. The “encoder” consists of base “DownBlocks” including

and “decoder”. “# Params” is the total number of trainable parameters in the
U-Net.

Designation Width  Depth  Levels # Params
TINYU 16 4 4 4,010,369
sMALLU 32 4 4 16,024,833
MEDIUMU 64 4 4 64,066,049
MeEpIUMU_L3 64 3 3 15,814,657
MepiuMU_LS5 64 5 5 257,037,825
LARGEU 128 4 4 256,197,633

Table 3. Evaluation results of various U-Net size configurations from Table 2
after training for 30 epochs. All experiments are based on the translation
GAsS—DM, adversarially trained with the same discriminator configuration.
Model results in bold are optimal values, and those marked with T exhibit
mode collapse and are not reliable.

Designation PSNRT SSIM 1T MSE | FID |
TINYU 3531 09954 5.5x107¢ 12.02
smaLLU 39.12 09966  6.6x107* 1275
MEDIUMU 3976 09977  4.2x107* 9.71
MmepiumU_L3 39.57 09967 6.8x107* 3044
MmepiumU_L5 4801 09972 29x10°¢ 18.31
LARGEU 76528 109978  3.1x 1073  ¥270.0

Based on these findings, we identified the MEpIUMU configuration
as the optimal U-Net configuration for this task. It offers a favourable
trade-off between performance and computational cost, avoids over-
fitting, and maintains stable training dynamics. This configuration is
therefore used as the default architecture in all subsequent experi-
ments unless stated otherwise.

Note that for diffusion models, spot tests resulted in compara-
ble distortion metrics, however, to offset the substantial increase in
computational cost, the U-Net width was reduced to 32 channels,
prioritizing the inclusion of additional attention layers.

Attention layer placement experiments. Having established an
optimal baseline configuration, we investigated the impact of atten-
tion layer placement within the U-Net architecture in a subsequent
series of experiments. While prior work suggests that attention mech-
anisms can enhance global context modelling (Vaswani et al. 2017),
their effectiveness and efficiency may depend on the resolution level
at which they are applied. To this end, we varied the position of self-
attention blocks across encoder and decoder stages, including con-
figurations with attention in early layers (high-resolution features),
late layers (low-resolution, high-semantic features), and hybrid place-
ments spanning multiple levels. While attention layers are expected
to yield superior results no matter the placement, the main purpose of
these experiments was to assess the relative performance differences
of less computationally demanding placement in late layers to those
in high-resolution features. All other architectural and training set-
tings were kept identical to those in the optimal configuration from
the U-Net size experiments. Only the learning rate update schedule
was changed to a one-cycle policy due to instabilities in the generator-
discriminator dynamics and to keep learning rate comparably high.
The evaluation focused on image-based metrics to determine whether
attention placement influences fine-grained structural fidelity. These



Table 4. U-Net configurations with various attention blocks positioning (en-
coder levels numbered top to bottom, continuing in the decoder bottom up).
The second column “# Encoder” indicates how many attention layers are
included in the encoder, the third “# Decoder”, how many in the decoder.
“# Params” is the total number of trainable parameters in the U-Net. The
right-most column is the average time for a forward pass with a single batch.

Designation  # Encoder  # Decoder # Params  Forward pass
ATTNU1 1 0 64,082,817 15.3765 s
AarTNU3 1 0 64,329,729 2.0411s
AatTNU4 1 0 65,117,697 1.9542 s
ATTNUMID 1 0 68,266,497 1.9796 s
AtTNUS 0 1 68,266,497 1.9904 s
ATTNU6G 0 1 65,117,697 2.2751s
ATTNU8 0 1 64,132,353 27.8642 s
ATTN3XxU3 2 1 69,581,825 5.7335 s
ATTNALL 4 4 71,046,529 48.2022 s

Table 5. Evaluation results of U-Net attention layer placement experiments
from Table 4 after training for 30 epochs. All experiments are based on
the translation cas—bM, adversarially trained with the same discriminator
configuration. Model results in bold are optimal values, and those marked
with T exhibit mode collapse and are not reliable.

Designation PSNR {1  SSIM 1 MSE | FID |
ATTNU1 3723 09968  3.4x107* 6.93
ATTNU3 37.10 09972  3.5x107* 6.64
ATTNU4 3670 0.9968  3.6x 1074 6.59
ATTNUMID 3527 09983  3.7x107* 7.47
ATTNUS 3576 09983  3.6x107* 6.60
AtTNU6 3626 09974  3.6x107* 457
ATTNUS 722,55 0.9 T1.2x1072 72532
ATTN3xU3 3771 09970  3.4x107* 4.04
ATTNALL 4255 09934  32x107¢ 8.70

experiments aim to identify the most effective strategy for leveraging
attention without incurring unnecessary computational overhead.

The results of these experiments (Table 5) reveal that the bene-
fits of self-attention layers in U-Net blocks are indeed dependent on
both the number and placement within the network. While adding
attention universally across all levels (ATTNALL) improved pixel-
wise metrics such as PSNR, it comparatively degraded distributional
consistency as measured by FID, indicating over-parametrization.
Conversely, a moderate number of self-attention layers in the deepest
levels seems to generally improve distributional, perceptual fidelity
compared to the previous experiments, in trade for distortion (cf. Blau
& Michaeli 2018). In particular, adding attention layers near the bot-
tleneck (artn3xU3) yielded the best FID scores while maintaining
competitive PSNR and the other distortion metrics. These findings
suggest that for this dataset global interactions are most effectively
modelled when attention is applied to low-resolution, high-semantic
feature maps, whereas attention in high-resolution layers may lead
to equally or better performance but introduces unnecessary ineffi-
ciency and instability. Moreover, all experiments have been repeated
using the convolutional attention variant, with nearly identical results
in each run, and minimally shorter forward pass timings. Based on
these results, we adopt a configuration with three deep convolutional
attention layers for all subsequent experiments, as it offers the best
balance of generative fidelity, stability, and efficiency.
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Table 6. PatchGAN configurations of various sizes. “Width” refers to the
base number of feature channel in the first hidden layer, whereas “Depth” is
the number of hidden layers in the network. “# Params” is the total number
of trainable parameters in the PatchGAN network.

Designation Width  Depth # Params
PGAN_SMALL 64 3 2,765,505
PGAN_MEDIUM 64 4 11,165,377
PGAN_LARGE 64 5 44,742,337
PGAN_WIDE 128 3 178,875,777
PGAN_NARROW 32 3 11,197,281

Table 7. Evaluation results of PatchGAN size experiments from Table 6 after
training for 30 epochs. All experiments are based on the translation GAs—bM,
adversarially trained with the same generator configuration. Model results in
bold are optimal values.

Designation PSNRT SSIM 1T MSE| FID|
PGAN_SMALL 32.46 0.9894 8.3 x107* 18.04
PGAN_MEDIUM 37.16 0.9901 43x104 4.62
PGAN_LARGE 36.56  0.9960 5.7 x 1074 8.47
PGAN_WIDE 3477 09952  7.1x107% 8.65
PGAN_NARROW 35.16 0.9909 6.0x 107* 9.75

Model specifics With the attention configuration fixed, we proceed
to model-specific refinements. In this stage, we tuned discriminator
architectures for GAN-based models and evaluate noise scheduling
strategies for diffusion models.

For GAN-based models, the PatchGAN discriminator’s width,
depth, and number of hidden layer configurations were spot tested
(see Table 6 for configurations). Based on the results in Table 7, the
PGAN_MEDIUM configuration was used for the final model training.
While there were no clear differences between the various configu-
rations, smaller networks had the tendency to impose checker-board
artefacts in the generator outputs and larger, wider ones lead to in-
stabilities during training due to mismatched sizes between discrim-
inator and generator.

For diffusion models, the U-Net includes a sinusoidal time-
embedding with 32 channels in each block (as described in Sec-
tion 2.4). Moreover, linear, quadratic, and cosine noise schedules
have been tested, and cosine clearly improved image quality (with
a consistent 2-3 dB improvement in PSNR, 0.05-0.1 difference in
SSIM), convergence, and provided smoother denoising transitions.

2.8 Domain translations

With all model components conservatively optimized, the final stage
of experiments extended the map-to-map translation task to encom-
pass all available domains. Given the combinatorial nature of the
dataset, exhaustively exploring all 5040 possible domain translations
is infeasible. However, it is reasonable to expect that the complex-
ity of translations tasks varies between the astrophysical interactions
between the components. For instance, domain translations such as
GAas—HI or 21cM—aas are likely to be less complex, as they repre-
sent information completion or reduction. On the other hand, map-
pings like sTaARs—DM are inherently more challenging due to the
“weak” coupling of these components in the simulation.

To capture this diversity, we selected a representative subset of
domain pairs that span a broad range of translation difficulties; the
translations are centred around Gas due to its close relation to ob-
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servable quantities and, thus, astronomical relevance (as mentioned
in Section 1). These included the following mappings:

o within baryonic components
— GAS—HI,
— GAs—21cm,
— 2lcM—aGas,
— GAS—STARS
e baryonic-to-DM translations
— GAS—DM,
— DM—GAS
o thermodynamic transformations
— GAS—TEMP
e magnetic field strength reconstructions
— GAS—BFIELD.

For each selected pair, models were trained using the optimized U-
Net configuration identified in previous experiments, with attention
layers placed near the bottleneck.

Both GAN-based and diffusion-based models were evaluated, and
their outputs compared using the full suite of CV and astrophysical
metrics. This strategy allowed us to assess not only the fidelity of
individual translations but also the consistency of physical quanti-
ties across domains. In particular, we investigated whether certain
domain pairs exhibit systematic biases or structural artefacts, and
whether translation difficulty correlates with the intrinsic entropy or
sparsity of the source domain. The results of these experiments are
summarized in the following Section 3.

3 RESULTS
3.1 Qualitative assessment of samples

Figure 1 shows representative samples of map-to-map translations
across the (unseen) test set of domain pairs. Each triplet shows the
input map (left), the ground truth target (middle), and the model pre-
diction (right). For strongly coupled domains such as cas—bwm, both
GAN and DDPM reproduce global morphology and substructures
with high fidelity across various scales and mass ranges. In some
cases, smaller satellite haloes are either missing or were generated
without any counterpart in the ground truth maps. When present,
they are typically plausible domain translations of the input map.

Also, the translations cas—HI, GaAs—21cm, and 21cM—Gas are
consistently in excellent agreement for both models, with only mild
over- or underestimation in some systems.

For thermodynamic and field-like targets (GAS—TEMP,
GAs—BFIELD), DDPM predictions better preserve global gra-
dients, whereas GANs sometimes sharpen local contrast and slightly
overemphasize smaller map features.

The arguably most challenging inverse mappings (e.g., DM—GAS)
reveal residual artefacts and misaligned substructures for both mod-
els, underscoring the difficulty of inferring baryonic components
from DM alone.

Similarly, both models struggle to faithfully reproduce translations
involving the weakly correlated components GAS—STARs. Samples
from this task exhibit noticeable deviations: predicted stellar maps
fail to capture the clumpy, centrally concentrated structures, reflecting
the intrinsic (temporal) non-locality and higher entropy of the stellar
distribution.

Overall, these examples illustrate that translation quality corre-
lates strongly with the physical coupling between source and target
domain, and that GAN models and DDPM reproduce very similar
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samples and differ mostly in the details and high-frequency features:
GANSs often excel in structural sharpness for tightly coupled map-
pings, whereas DDPMs better maintain global coherence in more
weakly constrained tasks.

3.2 Overall performance across translation tasks

The measured model performance varies systematically with the
physical coupling between source and target domains (Tables 8 & 9).
As in previous experiments, the SSIM metric saturates quickly during
training and is less discriminative than the other image-based metrics.

Table 8 lists image-based (traditional CV) metric evaluations for
all domain translation tasks, grouped in pairs of GAN and DDPM.
The best mean value of each metric across all tasks and models is
listed in bold. Similarly, Table 9 shows the set astrophysical metric
evaluations in the same order and grouping.

Among all tested translations, GAs—DM attains the highest overall
fidelity: GAN and DDPM models reach best FID scores of 1.56 +
0.36 and 2.03 + 0.08, respectively, with PSNR values above 35 dB
and SSIM z 0.997 (see Table 8). The astrophysical metric evalua-
tions listed in Table 9 confirm this trend for GaAs—bM: asymmetry
and clumpiness errors are among the smallest, COM offsets are neg-
ligible, and cumulative total mass deviations (evaluated at Rsp) and
power-spectrum errors remain modest.

Translations within the baryonic sector also perform strongly
when the target is closely tied to the gas morphology. Gas—HI
and cas—21lcm achieve low FID values of 4-6 and competitive
PSNR/MSE. These models show low morphological errors (AE and
SCE), minimal COM drift, excellent recovery of the radial profiles,
and reproduce the expected near-monotonic relations between the
total gas mass, neutral hydrogen mass, and 21-cm brightness tem-
perature.

Moreover, the inverse mapping 21cM—Gas remains tractable with
similar FID values up to 7.6, competitive ranges for the other pixel-
wise metrics. The aligned performance with its counterpart across
all astrophysical metrics suggests that reconstructing gas maps from
observational 21-cm inputs is feasible.

In contrast, mapping bM—Gas is substantially harder, only scoring
within an FID range between 22 and 45, and slightly but consistently
worse results across all astrophysical metrics.

However, the most challenging mapping is clearly GAS—STARS,
which yields FID scores above well above 50, PSNR below 20 dB,
and SSIM values well below the normal saturation levels. The large
morphological errors, especially in asymmetry, reflect the models’
inability to capture the alignment and ellipticity of the mass distri-
butions, and the clumpiness errors indicate the models’ difficulty to
cope with the high non-locality of the stellar components.

We note that hyper-parameters (U-Net size/attention and Patch-
GAN settings) were primarily optimized on the Gas—pwm task (Sec-
tion 2.7); this may confer a slight advantage to GaAs—DbM in cross-task
comparisons. Thus, we repeated a small hyper-parameter sweep for a
balanced set of tasks (GAS—STARS, GAS—HI, and DM—GAS) to assess
possible task-selection bias and performed a regret analysis based on
the average FID score. The resulting task ranking was unchanged and
the regret of the optimal configuration (as in Section 2.7) remained
small across tasks, indicating that the results reflect intrinsic task
difficulty rather than tuning alone.

3.3 Metric interpretation

Direct comparison of PSNR and MSE across models require care
because of the different preprocessing ranges (see Equation 1): GAN
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Figure 1. Samples from various models and tasks. Each panel shows a model input map on the left, the corresponding ground truth in the middle, and
prediction on the right. Qualitative comparison confirms the alignment of astrophysical plausibility and human perception with astrophysical metrics and FID
(see Tables 8 and 9).

(a) as—bpM: GAN-inferred samples. (b) cas—pm: DDPM-inferred samples.
input ground truth prediction ground truth prediction

Eous Mo/ kpe?]

(c) cas—stars: GAN-inferred samples. (d) cas—stars: DDPM-inferred samples.
input ground truth prediction ground truth prediction
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(e) gas—HI: GAN-inferred samples. (f) gas—ur: DDPM-inferred samples.
input ground truth prediction input ground truth prediction
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(g) cas—21cm: GAN-inferred samples. (h) cas—21cm: DDPM-inferred samples.
input ground truth prediction input ground truth prediction
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(i) cas—T1EMP: GAN-inferred samples. (j) cas—T1EMP: DDPM-inferred samples.
input ground truth prediction input ground truth prediction

(k) cas—BFIELD: GAN-inferred samples. (1) cas—BrIELD: DDPM-inferred samples.
input ground truth prediction input ground truth prediction
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(m) pMm—aGas: GAN-inferred samples.

input

Sam (Mo / kpe?)

Zom Mo / kpe?]

Zam [Mo / kpe?]

ground truth
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(0) 21cMm—aGas: GAN-inferred samples.
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Table 8. Extensive results for the entire suite of map-to-map translation models with image-based metrics (see Section 2.5). The values listed are mean +
standard deviation of the respective metrics from the last 5 epochs (duration chosen as patience parameter when testing for convergence), as metric values for
GANS fluctuate more. Note that the data ranges differ for GAN and DDPM models, which inherently biases the metric towards DDPMs by ~6.02 dB for the

same MSE value. Thus, the PSNR values for DDPM models were implicitly unbiased in the discrimination analysis.

Translation Model PSNR 7 SSIMT MSE (x107%) | FID |
GAS—DM GAN 3531 £0.11  0.9974 + 0.0002 3.82 + 0.00 1.56 + 0.36
GAS—DM DDPM  41.17£0.07  0.9970 + 0.0001 424 £ 0.10 2.03 £ 0.08
GAS—STARS GAN 18.55+0.36  0.5738 £ 0.0154 324.12 + 344  60.56 + 15.98
GAS—STARS DDPM  23.34+0.05 0.5577 £ 0.0046 324.60 = 10.58  56.17 = 14.33
GAS—HI GAN 3327 +£0.16 0.9739 £ 0.0011 15.31 + 0.80 4.57 £ 0.99
GAS—HI DDPM  39.99 £0.14  0.9749 + 0.0009 17.11 £ 0.77 5.86 £ 0.05
Gas—2lcm GAN 31.60 £ 0.48  0.7958 £ 0.0115 17.90 + 0.78 357+ 1.03
cas—21lem DDPM  38.55+0.05 0.8133 +£0.0013 17.95 £ 0.12 5.78 £ 0.07
GAS—TEMP GAN 37.05+£0.27  0.9973 + 0.0002 5.04 £ 0.19 991 + 3.18
GAS—TEMP DDPM  41.56 £0.06  0.9967 + 0.0001 3.99 + 0.32 7.86 = 0.13
GAs—BFIELD  GAN 38.76 £ 0.62  0.9964 + 0.0003 2.75 £ 0.51 9.80 + 1.67
Gas—BFIELD DDPM 4339 +0.26  0.9955 + 0.0007 3.60 + 0.28 8.38+ 0.33
DM—GAS GAN 31.28 £0.12  0.9853 + 0.0003 12.18 £ 0.79  36.36 + 9.58
DM—GAS DDPM  36.96 +0.03  0.9845 + 0.0008 10.62 + 040 22.87+ 0.73
21cM—GAs GAN 3595 +£0.56  0.9904 + 0.0013 446 £ 0.55 7.60 £ 2.24
21cM—GASs DDPM  42.08 £0.07  0.9900 + 0.0003 375+ 0.10 5.63 + 0.90

Table 9. Extensive results for the entire suite of map-to-map translation models with astrophysical metrics (see Section 2.6). The values listed are mean +

standard deviation of the respective metrics from the last 5 epochs.

Translation Model AE | SCE | COMD | CRCE (atRsg) | PSE |
GAS—DM GAN 0.0655 + 0.0005  0.0027 + 0.0000 0.0211 £0.0173  0.2132 £ 0.1982  0.0788 + 0.0041
GAS—DM DDPM  0.0746 + 0.0005  0.0032 + 0.0000  0.0215 +0.0168  0.2196 + 0.1998  0.0856 + 0.0042
GAS—STARS GAN 0.7460 = 0.0529  0.0975 + 0.0265  0.0657 £ 0.0446  1.3772 +£5.7906  0.0690 + 0.0046
GAS—STARS DDPM  0.4466 + 0.0494  0.0812 + 0.0235 0.0297 +£0.0393  1.2875 +3.4577  0.0596 + 0.0042
GAS—HI GAN 0.0839 £ 0.0028  0.0207 +£ 0.0013  0.0128 £0.0178  0.2684 + 0.3197  0.0307 + 0.0024
GAS—HI DDPM  0.0885 +0.0031  0.0219 + 0.0014  0.0136 £ 0.0191  0.2948 + 0.3595  0.0363 + 0.0028
cas—21lcm GAN 0.0713 £0.0027  0.0186 + 0.0012  0.0109 + 0.0155  0.2192 + 0.3051  0.0452 + 0.0270
GAas—2lcm DDPM  0.0813 £ 0.0029  0.0210 + 0.0013  0.0120 +£ 0.0167  0.2765 + 0.2648  0.0524 + 0.0308
GAS—TEMP GAN 0.0901 = 0.0001  0.0024 + 0.0000  0.0561 £ 0.0367  0.1754 £ 0.1909  0.0568 + 0.0047
GAS—TEMP DDPM  0.0793 £ 0.0001  0.0019 + 0.0000  0.0484 +0.0332  0.1605 + 0.1725  0.0597 + 0.0041
Gas—BFIELD  GAN 0.0822 £ 0.0012  0.0093 + 0.0002  0.0371 £0.0213  0.2209 + 0.1843  0.1000 = 0.0554
Gas—BFIELD DDPM  0.0647 + 0.0010  0.0072 £ 0.0002  0.0294 +0.0192  0.1928 £ 0.1739  0.0875 + 0.0497
DM—GAS GAN 0.1093 £ 0.0022  0.0224 + 0.0006  0.0367 £ 0.0242  0.3143 £ 0.4294  0.0328 + 0.0030
DM—GAS DDPM  0.1085 +0.0021  0.0184 + 0.0006  0.0357 +£ 0.0246  0.2946 + 0.3300  0.0333 + 0.0030
21cM—GAs GAN 0.0891 £ 0.0019  0.0161 +£0.0004 0.0148 + 0.0141  0.3483 + 0.3448  0.0641 + 0.0038
2lcM—Gas DDPM  0.0705 +0.0018  0.0131 £ 0.0004  0.0124 £ 0.0115  0.3231 £ 0.3867  0.0621 + 0.0037

inputs/outputs are mapped [0, 1], while DDPMs use [—1,1]. The
DDPM pixel value range is a factor of 2 larger, which biases PSNR
by roughly 6.02 dB for the same MSE. Thus, throughout the cross-
model PSNR comparisons in this Section 3 we implicitly remove this
bias.

On these data domains, pixel distortion metrics PSNR, MSE, and
especially SSIM are near-ceiling for several tasks (e.g. Gas—pm) and
can under-discriminate subtle morphological differences in smooth,
high-resolution simulation maps. Conversely, the suite of astrophysi-
cally motivated metrics (AE, SCE, COMD, CRCE, and PSE) remains
sensitive to structural realism and are model-agnostic.

Figures 2 and 3 illustrate how global errors manifest spatially.
Both metrics measure important features (e.g., structural symmetry
and fine-structure resolution) indicative of morphological realism
and overall plausibility of generated samples. Figure 2 shows the
average asymmetry error map for GAS—21CM versus GAS—STARS.
Errors of the latter task are roughly an order of magnitude larger with
a slight chequerboard pattern, indicating unresolved fine-structure
and adversarial artefacts. For cas—pwm and pm—Gas (Figure 3) the
harder inverse mapping (latter) exhibits higher small-scale residuals
consistent with unrealistic fragmentation.

Centre-of-mass drift errors can also be decomposed in more detail
(Figure 4). While the COMD only measures the scalar global drift,
higher values may have different causes: the upper panel shows a near-
uniform distribution of COM drifts (good positional agreement),
whereas the lower panel exhibits a noticeable angular bias, signalling
a systematic vectorial drift of the inferred mass centroid.

3.4 Model types: performance and trade-offs

There is no universal winner between GANs and DDPMs across all
tasks. GANs tend to achieve lower FIDs when the target is tightly tied
to the gas morphology (e.g., GAS—DM, Gas—HI, and GaAs—21cm),
while DDPMs often deliver more favourable astrophysical fidelity
(lower AE, SCE, and COMD) for less strongly related quantities such
as GAS—TEMP, or GAS—BFIELD. Moreover, GANSs inherently exhibit
more quality fluctuations even long into training due to the adversarial
nature of their objective; this is evidenced by the typically higher
standard deviations of the metric results from the last five epochs.
These complementary behaviours suggest that adversarial training
sharpens structural realism in strongly coupled mappings, whereas
diffusion-based modelling better preserves global morphology for
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Figure 2. Examples of normalized asymmetry error maps for the mappings
Gas—21cM (top) and Gas—sTARs (bottom) in the test set, inferred by GANs.
The overall mean error is around an order of magnitude larger for GAS—STARS
and relatively uniform but exhibits a slight chequerboard pattern, indicating
the difficulty to model the fine-grained structure of the stellar mass distribu-
tion. gas—21cMm exhibits smaller irregular errors which are noticeable due
to overall lower average error.

thermodynamic and field-like targets. From a resource perspective,
the GAN models in this work required ~ 140 kWh training energy
versus ~ 520 kWh for DDPMs in our setup (summarized read-outs
from the GPU monitoring system for all runs, not including ablation
tests). Both approaches are orders of magnitude more energy-efficient
than re-running comparable hydrodynamical simulations O(GWh)
(cf. Table 1 in Nelson et al. 2019), but the ~ 4x advantage of GANs
can be decisive when many map-to-map translation models need to
be trained.

3.5 Global consistency of inferred quantities

Figure 5 compares integrated inferred properties against ground truth
for the unseen test population. For strongly coupled mappings such as
cAas—HI and gas—21cm, both GAN and DDPM models recover total
masses with minimal bias and scatter, indicating robust conservation
of global properties. Notably, 99.9% of errors for all listed map-
pings, including Gas—bwMm, 21CM—GAS, GAS—TEMP, GAS—BFIELD,
are within a factor of 10 (see also Table 9). In contrast, the map-
ping GAs—sSTARS is exceptionally challenging for both models and
presents large scatter and bias patterns (Figure 5b): DDPMs over-
predict at low masses and under-predict at the high-mass end, while
GANSs exhibit smaller mean bias but extreme scatter reaching be-
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Figure 3. Examples of normalized clumpiness error maps for the mappings
Gas—DM (top) and bM—Gas (bottom) in the test set, inferred by GANs.
To keep numerical stability, the inner regions of the error maps have been
masked to 5% of the map’s respective half-mass radius. The overall mean
error is around an order of magnitude larger for bpm—aas, indicating the
increased difficulty of predicting baryonic components from DM compared
to the inverse mapping. Moreover, due to the collisionless nature of DM, its
distributions tend to be smoother, which also contributes to the lower mean
error. For Gas—pm, errors mainly arise due to the wrong estimate of DM
substructure in the haloes, whereas errors for bM—Gas indicate unrealistic
fragmentation in small-scale structures.

yond two orders of magnitude. These outcomes mirror the expected
entropy and non-local differences among target domains and under-
line the task difficulty ordering observed in the other astrophysical
metrics.

4 CONCLUSION

We presented the first systematic study of multi-domain map-to-
map translations for galaxy formation simulations, introducing deep
generative models as scalable data-driven alternatives that map be-
tween seven physical domains (DM, stellar mass, gas mass, neural
hydrogen mass, 21-cm mock brightness, temperature, and magnetic
field strength), comparing adversarial (GAN) and diffusion (DDPM)
deep learning approaches under unified preprocessing and evalua-
tion. Both approaches are able to learn physically plausible solutions
to these domain translations, demonstrated on a dataset of galaxy
maps extracted from the ILLUSTRISTNG suite (TNG50-1). Across
extensive ablations and metrics — distortion (MSE, PSNR, SSIM),
perceptual (FID) and astrophysical metrics (asymmetry, clumpiness,
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Figure 4. Examples of the angular distribution of COM drifts for the map-
pings Gas—HI (top) and Gas—sTaRs (bottom) in the test set, inferred by
DDPMs. While the upper wind rose diagram shows a uniform distribution
for as—H1 COM drifts, Gas—stars exhibits an angular bias towards 0. The
concentration of these errors in lower offset bins (in units of Rs), as shown
for cas—Hi, indicates low overall drift and typically good agreement with
the ground truth.

centre-of-mass drift, radial/cumulative curves, power spectra) — we
find that translation difficulty strongly correlates with the physical
coupling of source and target: GaAs—DM achieves the best fidelity
measured by image-based metrics (FID = 2.0), Gas—HI, Gas—21cM,
and 21cm—aas are likewise strong and conserve integrated quanti-
ties, while bM—Gas is substantially harder but still produces plausi-
ble results. GAs—sTaRs remains the most challenging across all mea-
sures. GANs tend to excel for tightly coupled targets with sharper
structure and lower FID, whereas DDPMs better preserve global
morphology and thermodynamic or field-like structure; this com-
plementarity comes with a ~ 4x difference in training energy in
our setup (~ 140 kWh vs ~ 520 kWh). These results demonstrate
the feasibility of learnt representations that encapsulate aspects of a
simulation’s formation scenario @ from different observationally mo-
tivated inputs, while underscoring the need for domain-ware metrics
and physics-informed inductive biases to tackle weakly constrained
mappings. Notably, despite the controversy around the use of FID in
scientific domains (cf. 2.5), it correlated surprisingly strongly with
the astrophysical metrics which capture structural realism, suggesting
it is an appropriate discriminator for our use case.
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Physical couplings. The empirical task ordering we observe fol-
lows the expected information coupling among galaxy components.
Gas traces the gravitational potential well and interacts collision-
ally, so cas—DM is comparatively well-posed: large-scale morphol-
ogy and substructure are strongly correlated, enabling excellent as-
trophysical veracity (low FID and morphological errors; see Ta-
bles 8 and 9 and Figure 3). In contrast, the inverse mapping DM—GAS
is under-constrained: while the DM halo delineates the potential,
baryon distributions are additionally set by feedback, heating, and
cooling; our models thus exhibit more clumpiness residuals and
centre-of-mass drift (Figure 3), consistent with fragmentation arte-
facts. The most difficult case, gas—sTARs, reflects the intrinsically
non-local nature and higher entropy of stellar mass assembly: star for-
mation depends on history and feedback cycles only weakly encoded
in a single gas snapshot, leading to large asymmetry and clumpiness
errors, poor FID, and strong biases in integrated stellar mass (see
Tables 8 and 9 and Figures 2 and 4). Altogether, the results corrob-
orate the conceptual view in Equations 2 and 3: learning conditional
terms is easier when nuisance parameters are few and the conditional
entropy of the target given the source is low.

Integrated quantities provide an orthogonal check of global physi-
cal plausibility. We find minimal bias and scatter for most mappings.
The outlier is GAs—sTars, which shows systematic bias and large
scatter for both model types (Figure 5b). These findings imply that for
a subset of domains with strong coupling, chaining of models (e.g.
21cM—Gas—DM) may be feasible without much loss of information
(without explicitly training for cycle-consistency).

Model choice guidance. No single model type dominates across
all translations. Adversarial training yields good high-frequency re-
sults (at times mildly exaggerated), especially for targets strongly
coupled to the gas morphology, but exhibits larger epoch-to-epoch
variability — a hallmark of the minimax optimization game (cf. Ta-
bles 8, 9, and Section 2.3.1, Equation 4). Diffusion models tend to
preserve global gradients and in more complex couplings and often
improve astrophysical plausibility at the cost of slower sampling and
higher training time and energy. From a practitioner’s standpoint:

e choose GANS for tight, morphology-driven mappings where fast
inference is worth the small trade-off in accuracy;

e choose DDPMs when the target encodes smoother or more com-
plex fields, when robustness in astrophysical accuracy has highest
priority.

Importantly, through targeted architectural and training optimiza-
tions, including U-Net depth/width tuning, attention placement near
the bottleneck, and discriminator sizing (Section 2.7), we demon-
strate that GAN-based models can achieve performance on par with
state-of-the-art DDPMs for most mappings. This parity, combined
with GANs’ lower training energy and single-pass inference, po-
sitions them as a competitive and computationally sustainable al-
ternative for large-scale deployment. Moreover, a hybrid approach
which draws from each methods advantages while mitigating their
disadvantages, could be an promising avenue for future work.

Implications for observations. This work offers a direct path to
observational validation by incorporating domains that are measur-
able in practice, such as 21cm brightness and neutral hydrogen, into
the translation process. This capability is particularly critical for the
SKA, which will probe the distribution of H1 in nearby galaxies
to unprecedented precision. Here, two practical applications of our
models emerge:

o Forward modelling: predicting 21-cm brightness from simulated
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Figure 5. Global statistics of inferred vs true integrated quantities. The colour scheme qualitatively indicates histogram density and matches the task assignment
analogous to Figure 1. In general, GANs and DDPMs show no biases and minimal scatter of integrated quantities (except for GAS—STARSs).
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gas maps and pass through an instrument response pipeline (such

as Karabo; Sharma et al. 2025) for high-realism mock observations

including SKA-like systematics.

e Reconstruction: inferring gas distributions and related galactic
properties from observed 21-cm maps of nearby galaxies to sup-
port feedback and morphological studies.

By embedding observational proxies and incorporating, e.g., beam
smoothing, thermal noise, and foreground residuals into the genera-
tive framework (during training or via data augmentation), domain-
shift robustness is increased; our astrophysical metrics are naturally
suited to quantify degradation after instrumental effects. This pro-
vides a scalable pathway to interpret SKA data within the context of
galaxy formation scenarios.

Limitations. Our models learn by design conditional slices of
a simulation’s formation scenario ®. Because ® depends on sub-
grid physics and calibration, generalization across suites (e.g. ILLus-
TRISTNG, SIMBA, FIRE, or EAGLE) and redshift evolution must be
demonstrated rather than assumed.

Furthermore, perceptual metrics such as FID carry domain-
mismatch assumptions; fine-tuning feature extractors on domain-
specific (astrophysical) data could provide an even better measure
for astrophysical veracity. More flexible alternatives to FID such as
LPIPS (Zhang et al. 2018b) could improve evaluation fidelity even
further.

Translation with weak couplings could be improved with addi-
tional constraints. Models for the cas—sTtars mapping lack suffi-
cient mutual information between input and target domains, making
the task particularly challenging.

Outlook. Future work will focus on addressing these limitations.
Weakly constrained mappings could be improved by further ex-
tending the dataset domains with intermediates. For instance, since
H; is more closely tied to star formation, it should provide better
constraints for the stellar mass prediction via GaAs—H, —STARS.

Alternatively, various inductive biases could also provide stronger
constraints during training:

o Regularization of the objective function: directly physics-informed
networks through, e.g., constraining mass within aperture, or
penalties on radial-profile mismatch.

o Structure-aware discriminators: adversarial heads operating on
radial profiles, power spectra, or multi-scale losses.

o Equivariant architecture: SO(2)-aware U-Nets can reduce sample
complexity, and inherently enforce symmetries, thereby explicitly
handling nuisance parameters.

o Multi-domain training: predicting several targets at once in multi-
ple channels would increase cross-domain robustness but increase
processing time.

o Cross-suite transfer learning: cross-suite transfer learning and do-
main adaptation avoids re-training models on other simulation
suites from scratch, requiring only a small amount of fine-tuning
on the target simulation.

o Redshift conditioning: redshift introduces temporal information to
models and helps capture the true galaxy evolution through cosmic
time.

Our findings demonstrate that learnt generative surrogates can
transform galaxy formation research by bridging simulations and
observations, reducing reliance on costly, repeated hydrodynam-
ical runs. By coupling our blueprint for domain-aware assess-
ment of physical realism with computational scalability, this work
marks a significant step towards efficient, next-generation modelling
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pipelines, automated survey interpretation, and managing the ensu-
ing data deluge in the SKA era.
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