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Abstract

We present MInDI-3D (Medical Inversion by
Direct Iteration in 3D), the first 3D conditional
diffusion-based model for real-world sparse-view
Cone Beam Computed Tomography (CBCT) arte-
fact removal, aiming to reduce imaging radiation ex-
posure. A key contribution is extending the ”InDI”
concept from 2D to a full 3D volumetric approach
for medical images, implementing an iterative de-
noising process that refines the CBCT volume di-
rectly from sparse-view input. A further contribution
is the generation of a large pseudo-CBCT dataset
(16,182) from chest CT volumes of the CT-RATE
public dataset to robustly train MInDI-3D. We per-
formed a comprehensive evaluation, including quan-
titative metrics, scalability analysis, generalisation
tests, and a clinical assessment by 11 clinicians. Our
results show MInDI-3D’s effectiveness, achieving a
12.96 (6.10) dB PSNR gain over uncorrected scans
with only 50 projections on the CT-RATE pseudo-
CBCT (independent real-world) test set and enabling

an 8x reduction in imaging radiation exposure. We
demonstrate its scalability by showing that perfor-
mance improves with more training data. Impor-
tantly, MInDI-3D matches the performance of a 3D
U-Net on real-world scans from 16 cancer patients
across distortion and task-based metrics. It also gen-
eralises to new CBCT scanner geometries. Clinicians
rated our model as sufficient for patient positioning
across all anatomical sites and found it preserved lung
tumour boundaries well.

1 Introduction

Reconstructing high-quality medical images from
sparsely sampled or partial measurements is essen-
tial for advancing clinical imaging modalities such as
computed tomography (CT), positron emission to-
mography (PET), and magnetic resonance imaging
(MRI). These advancements aim to reduce scan times
and patient radiation exposure. Among these modal-
ities, cone beam computed tomography (CBCT) ex-
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emplifies both the promise and challenges of sparse
sampling.
CBCT is widely used to acquire volumetric X-ray

images on radiation therapy treatment devices, such
as linear accelerators, in image-guided radiation ther-
apy [1]. It is also employed in interventional radiol-
ogy offering high spatial resolution and short scan
durations [2]. While pre-treatment planning CT of-
fers higher image resolution for the intervention plan-
ning, the image of the day is acquired using on-
device CBCT. These CBCT scans can enable tumour
and organs at risk contouring, dose calculation, ART
(adaptive radiation therapy) workflows and precise
patient positioning [3]. Its clinical use faces the fol-
lowing challenges: First, image quality is often de-
graded by artefacts from patient motion, metal im-
plants, and undersampled projections [4]. In addi-
tion, repeated daily scans over extended treatment
periods (up to 40 sessions) raise concerns about cu-
mulative radiation exposure of the patient.
To address the challenges of cumulative radiation

exposure, reducing the number of projections, i.e.
sparse-view CBCT, has been proposed. Sparse-view
CBCT reconstruction however, introduces streak
artefacts – due to the NyquistShannon sampling the-
orem being violated – which degrade image quality
and hinder clinical utility. Deep learning-based ap-
proaches have emerged as promising solutions to ad-
dress these challenges, offering the potential to re-
construct high-quality images from limited projection
data.
Deep learning, particularly models including con-

volutional neural networks (CNNs), excels at learning
hierarchical features from image data, making them
well-suited for tasks such as image classification [5],
segmentation [6], and reconstruction [7]. In medical
imaging, U-Net [8] has become a cornerstone archi-
tecture due to its encoder-decoder structure with skip
connections, which enables precise localisation and
segmentation of anatomical structures. U-Net’s suc-
cess has inspired numerous variants and extensions,
including 3D U-Net for volumetric data, which is par-
ticularly relevant for CBCT reconstruction.
Generative deep learning, including Generative

Adversarial Networks (GANs) [9], Variational Au-
toencoders (VAEs) [10], and diffusion models [11],

have enabled high quality unconditional image syn-
thesis [12,13]. These unconditional generative models
have been further extended into conditional image-
to-image frameworks, where an input image is trans-
formed into a desired output (e.g., an artefact-free,
motion deblurred or super resolved image). Pioneer-
ing works like Pix2Pix [14] and CycleGAN [15] estab-
lished architectures for paired and unpaired image-
to-image translation, respectively. These methods
have been adapted to medical imaging for tasks such
as image-to-image domain translation (e.g., MRI to
CT), image generation, segmentation and denois-
ing/reconstruction (e.g. artefact removal) [16].

Diffusion models have significantly advanced im-
age synthesis and restoration, surpassing traditional
GANs in conditional and unconditional generation
tasks [12,17,18]. Their iterative denoising process en-
ables high-fidelity reconstructions by modelling com-
plex data distributions. However, a key limitation of
standard diffusion models is their computational cost
and speed, as they often require hundreds of itera-
tive steps during inference [11,12]. This makes them
impractical for many real-world applications, due to
prolonged inference times. To address this, InDI
(Inversion by Direct Iteration) [19] was proposed as
an efficient alternative for image enhancement tasks.
InDI reduces the required steps to a fraction by re-
placing the stochastic reverse diffusion process with
a deterministic direct iteration approach. This ap-
proach achieves results comparable to traditional dif-
fusion models with significantly fewer computational
resources. However, so far, InDI has only been ap-
plied to 2D images and non-medical datasets. While
classical diffusion models have shown promise in 3D
medical image enhancement, their inherent computa-
tional cost remains a significant bottleneck for clin-
ical adoption. Generalising efficient 2D frameworks
to complex 3D volumetric data and inverse problems
such as sparse-view CBCT introduces considerable
technical challenges [20–23]. Thus, our work intro-
duces MInDI-3D, a novel extension of InDI to 3D,
which represents a key contribution for enabling ef-
ficient high-fidelity, volumetric medical image recon-
struction. This gap in the literature motivates our
work, which extends InDI to 3D and evaluates its per-
formance in the context of sparse-view CBCT arte-
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fact removal.
Our study compares the performance of MInDI-3D

with a 3D U-Net, both almost identical in backbone-
architecture and parameter count (time-embedding
is added to the InDI backbone), highlighting the dif-
ferences in their training strategies. We evaluate the
impact of varying training data set sizes and different
number of sparse-projections (25 and 50 projections,
out of 400 projections in total for the test dataset)
on the performance of these approaches. Extensive
validation is conducted on test datasets acquired by
a different scanner. The perception-distortion trade-
off describes the inherent balance in image restora-
tion tasks between achieving high perceptual quality
(how ”realistic” an image appears to a human ob-
server) and minimising distortion (pixel-level devia-
tions from the original) [24]. InDI enables control
over this trade-off without retraining: increasing the
amount of sampling steps, InDI can trade distortion
for better perception reducing the problem of regres-
sion to the mean by adding realistic features [19]. We
explore this perception-distortion trade-off.

Our main contributions are summarised as follows:

• We introduce MInDI-3D, the first fully 3D itera-
tive diffusion-based model for sparse-view CBCT
artefact removal, extending the 2D InDI concept
to full 3D medical volumes.

• We generate and provide a large pseudo-CBCT
dataset with 16,182 chest CT volumes including
projections, enabling robust training of MInDI-
3D.

• We conduct a comprehensive evaluation includ-
ing quantitative metrics, scalability analysis,
generalisation tests, and a clinical evaluation by
11 clinicians.

• Our results demonstrate MInDI-3D’s effective-
ness in achieving significant PSNR gains, en-
abling radiation exposure reduction, and show-
ing strong generalisation to real-world data and
new scanner geometries.

The remainder of this article is structured as fol-
lows: In the next subsection, we provide an overview

of related work. In section 2, we discuss the datasets,
data simulation, and deep learning methods used,
elaborating on our training process and the metrics
we used to evaluate our models. The following sec-
tion 3 presents our findings across different datasets
and model architectures, while also presenting the re-
sults of a clinical evaluation. Finally, in section 4 we
discuss the results and provide an outlook on future
research.

1.1 Related Work

Extensive research has been conducted on charac-
terising and mitigating artefacts that degrade image
quality in CT and CBCT reconstruction [25, 26]. In
recent years, deep learning models have successfully
been shown to reduce artefacts in both 3D and 4D
(time-resolved) CBCT [4], offering promising solu-
tions for enhancing sparse-view CBCT image quality
(e.g. [27] for mitigation of motion artefacts). While
numerous studies have explored artefact removal in
sparse-view CBCT using deep learning, the majority
of these approaches have focused on non-generative
methods, often employing 2D approaches at times
with spatial awareness to reduce computational com-
plexity [28–30]. This spatial compromise creates an
opportunity for fully 3D approaches, that by design
optimise for inter-slice consistency.

Generative deep learning models in 3D have gained
attention in the field of medical imaging for tasks such
as unconditional image generation, image-to-image
translation (e.g., MRI-to-CT), and image enhance-
ment. Unconditional image generation has been pro-
posed as a privacypreserving tool to augment small
medical image datasets [31]. Three main architec-
ture types have been used in 3D unconditional med-
ical image generation: GANs [32, 33], VAEs [34, 35]
and diffusion models [31, 36]. These developments
in unconditional generation have naturally extended
to conditional tasks requiring paired data. Image-to-
image translation using generative models in 3D has
shown impressive results for medical images [37–40].
Several studies were conducted using GAN-based ap-
proaches, while more recently, researchers have used
diffusion and latent diffusion models for medical im-
age to image tasks [41].
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For medical image enhancement generative ap-
proaches have seen growing interest, though these ap-
proaches remain constrained by computational and
practical challenges. While GAN-based approaches
dominated early work [39, 42, 43], recent efforts have
shifted toward diffusion-based approaches. Li et al.
[21] employ three planar 2D diffusion models com-
bined in iterative reconstruction with a measurement
loss. They use the AAPM Low Dose CT Grand Chal-
lenge [44] dataset with 9 volumes for training and
1 for testing with a dimension of 512 × 512 × 512.
Lee et al. [22] use the same train and test dataset
setup but use two perpendicular 2D diffusion mod-
els as a 3D prior. Li et al. [45] utilised a 2D score-
based diffusion model for unconditional CT genera-
tion as a prior, combining it with a measurement loss
on the CT Lymph Nodes Dataset [46] (156 subjects,
512×512 images). Most work to date has focused on
2D or pseudo-3D strategies leveraging triplane em-
beddings [20], 2.5D fusion [21], or separate 2D mod-
els [22,23] to manage the computational burden of 3D
data [41]. These limitations have motivated research
into efficient diffusion-based implementations. InDI
requires a fraction of the steps compared to other
diffusion-based models for the conditional setting and
is therefore especially promising for the clinical set-
ting, where reconstruction speed is essential [19].

2 Materials & Methods

2.1 Datasets

CT-RATE is a public dataset [47] that includes
25,692 non-contrast chest CT volumes, expanded to
50,188 through various reconstructions, from 21,304
unique patients Table 1. From this dataset, we use
a subset of 3,612 patients. Volumes were of size
512× 512 voxels in the transverse plane and on aver-
age 309 slices along the z-axis and an average spacing
of 0.72×0.72×1 mm on the x, y and z-axis. We used
the CT-Rate dataset to generate a pseudo-CBCT
training dataset. We forward-projected the CT vol-
umes using a CBCT geometry to obtain CBCT pro-
jections (see section 2.2), which can then be recon-
structed by a CBCT reconstruction algorithm to

mimic the CBCT acquisition. Our pseudo-CBCT
dataset – including projection images, sparse-view
reconstructions (with 25, 50, and 100 projections),
and corresponding ground truth volumes – is pub-
licly available on Zenodo1.

We used a real-world CBCT dataset for testing Ta-
ble 1. This dataset was obtained in a Varian spon-
sored HyperSight imaging study (acquired on Var-
ian Halcyon linear accelerators). We refer to this
dataset as HyperSight. It comprises images from 16
cancer patients including five with abdominal cancer,
five with breast cancer, and six with lung cancer, for
whom permission to use their data has been obtained.

2.2 CBCT reconstruction and simula-
tion

Reconstructing 3D CBCT volumes from 2D projec-
tions can be achieved through analytical and iterative
approaches. The Feldkamp-Davis-Kress (FDK) [48]
algorithm, an analytical method, provides a fast and
reliable approximation of the inverse Radon trans-
form, establishing itself as widely used baseline for 3D
CBCT reconstruction. While FDK excels in compu-
tational efficiency, iterative reconstruction techniques
– such as the Simultaneous Algebraic Reconstruction
Technique (SART) [49] – leverage statistical mod-
els and iterative optimisation to improve image qual-
ity, particularly in sparse-view or low-dose scenarios.
However, their high computational demands often
render analytical methods like FDK more practical
for routine clinical applications. Our implementation
employs FDK with the Ram-Lak filter [50] to correct
radial sampling non-uniformity, a method commonly
termed filtered back-projection (FBP).

While the real-world dataset was acquired using a
full-fan, half-trajectory geometry, the pseudo-CBCT
was processed with a half-fan, full-trajectory scan-
ning geometry. The full-trajectory configuration in-
volves a 360° rotation, while the half-trajectory ro-
tates 210°. Half-fan mode allows for a larger field of
view by offsetting the detector laterally by 175 mm
and using the entire detector for half the field of view.
To mitigate artefacts from data redundancy in the

1https://zenodo.org/records/XXXXXXXX
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Dataset # Volumes # Patients Anatomic Region Data Type Scanner

CT-RATE 16182 3612 chest pseudo-CBCT Siemens SOMATOM
HyperSight 16 16 abdomen, breast, lung CBCT Varian Halcyon

Table 1: Dataset characteristics showing the pseudo-CBCT training dataset (with both volumes recon-
structed with 491 and 697 projections) derived from 8091 CT chest scans (CT-Rate) enabling robust training
and 16 real CBCT scans (HyperSight) validating clinical utility across multiple anatomic sites.

overlapping regions of the half-fan geometry, half-fan
weighting was applied. The effective area of the real-
world detector is 86× 43 cm (3072× 384 pixels). All
projections were generated with a source-to-imager
distance (SID) of 1540 mm and a source-to-axis dis-
tance (SAD) of 1000 mm.

For the pseudo-CBCT generation, CT volumes
were forward-projected to simulate both full-view
and sparse-view acquisitions. Projection parameters
– detector size (366 × 160 pixels), pixel resolution
(1.176 × 2.688 mm in axial and longitudinal direc-
tions, respectively), and projection counts (491 and
697 for full-view) – were aligned with a real-world
half fan scan protocol from a Varian Halcyon ma-
chine. Reconstructions were performed using the
FBP method, while varying the number of projec-
tions (full, 25, or 50). In sparse-view cases, pro-
jections were selected to uniform angular spacing,
minimising clustering artefacts and ensuring optimal
sampling coverage. The reconstructed volumes have
a height, width and depth of 256×256×64 voxels and
a spacing of 2× 2× 3 mm. We chose this volume size
and spacing to balance memory constraints in our 3D
deep learning pipelines with anatomical coverage.

2.3 Deep Learning Methods

This section presents the core methodology for cor-
recting sparse-view artefacts in CBCT images using
deep learning. First we present the architecture of
our backbone U-Net [8, 51] (see Figure 1) and then
proceed to the training and inference of MInDI-3D.
Unlike many 3D based methods that resort to latent
space or explicit spatial compression techniques like
wavelets to mitigate memory challenges in volumet-
ric data, our MInDI-3D operates directly in the 3D

voxel space to preserve anatomical detail and reduce
complexity.

2.3.1 3D U-Net backbone

Encoder Blocks: The encoder comprises four hier-
archical stages. Each stage contains two residual sub-
modules followed by downsampling. The first stage
contains an additional input layer (kernel: 3× 3× 3,
stride: 1). The residual submodules process the vol-
ume as follows: (1) batch normalisation [52] (BN),
(2) SiLU activation [53], and (3) a 3D convolution
(kernel: 3 × 3 × 3, stride: 1). The input to the
residual submodule is then added to the output. Af-
ter the residual blocks, a strided convolution (kernel:
3 × 3 × 3, stride: 2) downsamples the feature map
by a factor of 2. A skip connection adds the stage’s
output as input to the decoder at the same hierarchi-
cal level. Channel dimensions double at each stage,
progressing from 32 to 512.

Decoder Blocks: The decoder mirrors the
encoder, restoring spatial resolution through four
stages. Each stage begins by concatenating the skip
connection and the output from the lower stage and
processing it with a residual submodule described
above. The output is then upsampled with a trans-
posed 3D convolution (kernel: 4 × 4 × 4, stride: 2).
Finally, on the last stage, an additional 3D convolu-
tional layer (kernel: 3× 3× 3, stride: 1) is employed.
Channel dimensions halve at each stage, reversing the
encoders progression (512 to 32).

Attention Mechanism: Convolutional attention
applies the Scaled Dot-Product Attention [54] to a
convolutional layer following [55]. The convolutional
attention mechanism is integrated into the deepest
two encoder and decoder layers and is described sub-
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Figure 1: U-Net architecture with 4 hierarchical levels, showing layer-specific dimensionality (C×H×W×D),
where C is the number of channels, H is height, W is width, and D is depth (all in voxels), and time-embedding
(T). SiLU (Sigmoid Linear Unit) activations introduce non-linearity.

sequently. Input features first undergo group nor-
malisation, followed by a 1× 1× 1 convolutions that
project the normalised features into query, key, and
value tensors. Attention weights are computed via
scaled dot-product interactions across all spatial po-
sitions in the feature maps, enabling each voxel to
dynamically aggregate information from the entire in-
put domain. This global interaction is made tractable
by applying the mechanism exclusively at deeper net-
work stages, where hierarchical downsampling has re-
duced spatial dimensions.

2.3.2 Inversion by Direct Iteration (InDI)

InDI is a supervised image restoration method that
avoids the ”regression to the mean” effect, which can
lead to over-correction of outputs toward the aver-
age of the training data. By gradually enhancing
image quality in incremental steps, InDI produces
more realistic and detailed images [19]. Unlike gen-
erative denoising diffusion models, InDI defines the
restoration process directly from low-quality to high-

quality image, and uses a convex combination of the
input/target image as intermediate steps.

InDI forward degradation process: The InDI
forward degradation process is defined as follows:

xt = (1− t)x+ ty, with t ∈ [0, 1]. (1)

xt is an intermediate-degraded image between the
low-quality input y (at t = 1) and the high-quality
target x (at t = 0). The process starts from a clean
image at t = 0 and degrades it to a noisy image at t =
1. The iterative restoration process then gradually
improves the image quality by moving from t = 1 to
t = 0 in small steps.
Iterative Restoration Process: The restoration

phase inverts the forward process by iteratively pre-
dicting “cleaner” images while progressing backward
from t = 1 to t = 0.

x̂t− 1
N

=
1

N · t
Fθ (x̂t, t) +

(
1− 1

N · t

)
x̂t (2)

Equation (2) is a recursive update rule from the
InDI framework, designed to refine a prediction iter-
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atively. The left-hand side, x̂t− 1
N
, represents the next

predicted time step, with N representing the number
of steps. The right-hand side combines two terms:
1

N ·tFθ (x̂t, t), which introduces a time-aware back-
bone model Fθ. This backbone model predicts the
clean image from any time step/ degradation level.(
1− 1

N ·t
)
x̂t accumulates the current estimate. As

time progresses, the influence of the forward model
diminishes, giving more weight to the accumulated
estimate, ensuring stability.
In contrast to the baseline U-Net, we incorporate a

time-embedding into the U-Net backbone of the InDI
model. This time-embedding allows the model to un-
derstand the progression from the low-quality image
to the high-quality image, effectively encoding the
temporal distance between them and enabling an it-
erative restoration process. We use a sinusoidal time
embedding proposed by [11] with 1024 channels.

2.4 Training

Training is conducted on an NVIDIA H200 GPU
with 140 GB of VRAM, using the Adam optimiser
[56] (learning rate 0.0001) and mean absolute error
(MAE) (cf. 2.5) as the loss function. To improve con-
vergence, we employ a learning rate scheduler (epoch
step size 10, decay factor δ = 0.95), a batch size of
4, and gradient accumulation every two steps. Mod-
els are trained for 500 epochs, taking approximately
57 hours when using a dataset with 320 subjects for
training and 64 subjects for testing. The model with
3200 subjects took 216 hours to train for 180 epochs
and was stopped thereafter due to time constraints
(412 subjects were used for validation). We optimised
the learning rate, learning rate scheduler, batch size,
U-Net depth, size and attention layers for optimal
performance. Input images were normalised by lin-
early mapping HU values from -1500 to 1000 onto a
range from -1 to 1, without clipping.

2.5 Metrics & task-based Evaluation

In our experiments, we evaluate numerical distortion
performance using several quantitative metrics that
measure the point-wise voxel distance between pairs
of images (x, x′):

• Mean absolute error MAE = 1
N

∑N
i=1 |xi − x′

i|,
where N is the total number of images, xi de-
notes the ground truth voxel value, and x′

i rep-
resents the predicted value;

• Structural Similarity Index Measure (SSIM) [57];

• Peak Signal-to-Noise Ratio PSNR =

10 log10

(
MAX2

1
N

∑N
i=1(xi−yi)2

)
, where MAX is

the maximum possible pixel or voxel value;

• Dice Similarity Coefficient (DICE), which mea-
sures the spatial overlap between two segmented

volumes, defined as Dice(A,B) = 2|A∩B|
|A|+|B| , where

A and B denote the sets of voxels in the two seg-
mentations. A Dice score of 1 indicates perfect
overlap, while 0 indicates no overlap.

In Table 2, Table 3, Table 4, and Table 5, the
standard deviation is shown after the mean of the
metric. All distortion metrics are calculated in
Hounsfield units (HU) from pairs of uncorrected or
corrected volumes and their corresponding ground
truth counterparts. SSIM quantifies structural sim-
ilarity within spatially correlated 2D/3D regions.
Flattening masked data into 1D arrays destroys
these spatial relationships, rendering SSIM invalid for
masked vectors. MAE and PSNR on the other hand
measure pixel/voxel-wise errors, making them suit-
able for computation on flattened data. They are cal-
culated exclusively for the body, with the air around
the body masked out. The masks were generated by
first applying Otsu’s thresholding [58] method, which
automatically determines an optimal threshold value
to separate the foreground (typically the region of
interest) from the background based on the image
histogram. This binary segmentation was then re-
fined using morphological operations. Dilation was
used to close small gaps and connect nearby regions,
while erosion helped remove small noise and further
define the boundaries of the segmented structures.
These metrics are referred to as masked. We calcu-
late the PSNR value using 2000 HU as MAX value,
corresponding to a range from -1000 to 1000 HU.

As perception metrics, we use the Frchet Distance
(FD) [59] to measure the distance between the distri-
bution of the ground truth compared to the predicted
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image features. The image features are extracted us-
ing the pre-trained model DINOv2 [60], which as fea-
ture extractor has shown to most closely align with
human perception [59]. We process the volumes along
the axial plane and use the centre slice (2D image)
as input for the DINOv2 encoder.

As task-based evaluation, we use TotalSegmenta-
tor [61] to segment the heart, left lung, right lung,
ribs, and vertebrae. We chose TotalSegmentator as
a segmentation tool due to its robust segmentation
capabilities.

3 Results

3.1 Quantitative Evaluation

We evaluated the performance of the baseline 3D U-
Net and the MInDI-3D models across multiple experi-
mental configurations. Table 2 compares our MInDI-
3D model against a 3D U-Net baseline. MInDI-3D
achieves better results on both the hold-out test set
from CT-RATE as well as the real-world HyperSight
data (MAE: 30.55 vs. 32.16; PSNR 33.61 dB vs.
32.98 dB; SSIM: 0.91 vs. 0.90). The MInDI-3D
model improved the volume reconstructed with 50
projections by ∆PSNR = +12.96 dB on the valida-
tion set and ∆PSNR = +6.10 dB on the test set, see
Figure 2 .

To assess robustness to various levels of sparse-view
inputs, we trained MInDI-3D with varying projection
levels (25, 50, 100) and evaluated on the HyperSight
dataset (Table 3). The image reconstructed with the
smallest number of projections (sparse 25) achieved
the largest relative improvement(∆PSNR = +7.78
dB), compared to the ground truth, while models
trained with 100 projections showed the best abso-
lute result (PSNR = 35.32 dB).

We perform a task-based evaluation of segmenta-
tion stability using TotalSegmentator to automati-
cally categorise anatomical structures with MInDI-
3D, comparing its performance to a 3D U-Net (Ta-
ble 4). We evaluate how varying the number of
iterative refinement steps (130) in MInDI-3D im-
pacts segmentation accuracy, demonstrating that
critical structures like lungs (DICE=0.960.99), ver-

tebrae (DICE=0.95) and heart (DICE=0.910.92) are
preserved and consistency is retained regardless of
step count.

We present an ablation study on the performance
of three MInDI-3D models, trained with no, 1, or
2 attention blocks (Table 5). Adding two atten-
tion blocks yielded ∆MAE = −5.03, ∆PSNR = +2.02
dB and ∆SSIM = +0.01, validating their impor-
tance for capturing global dependencies. Addition-
ally, we analysed the impact of training dataset size
on the MInDI-3D model using 64, 320, and 3200 sub-
jects (Table 5). Increasing the training data size
improved all metrics, with the 3200-subject model
achieving the best metrics, i.e. ∆MAE = −11.47,
∆PSNR = +3.72 dB and ∆SSIM = +0.03 (compared
to the 64-subject model), demonstrating the impor-
tance of training dataset size for deep-learning based
artefact reduction in medical imaging.

We analyse the perception-distortion trade-off in
MInDI-3D through progressive sampling (Figure 3).
A single sampling step yields suboptimal results, fail-
ing to optimise either metric. Increasing steps be-
yond 2 (2-10 steps) trades distortion for realism:
PSNR declines modestly (from 33.61 dB to 33.31
dB) while perceptual quality improves (FD DINOv2:
from 75.83 to 20.14). This demonstrates that MInDI-
3D enables controlled trade-offs between fidelity and
realism through step adjustment. Visual examples of
this trade-off for a lung tumour are shown in Figure 4,
where added steps enhance sharpness and detail. The
optimal amount of sampling steps for fidelity, varied
across images and anatomic sites.

MInDI-3D achieves inference speeds competitive
with the 3D U-Net baseline: a single sampling
step requires 19 ms/volume versus the U-Nets 14
ms/volume (VRAM-loaded models). While MInDI-
3D has a higher latency, its total runtime remains
practical for clinical deployment, even at higher step
counts (e.g., 10 steps require ≈190 ms for model in-
ference).

3.2 Clinical Evaluation

To validate the quantitative results in a clinical set-
ting, a MInDI-3D model – trained on sparse 50 vol-
umes from 320 subjects – was tested on the real-
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Dataset MAE masked ↓ PSNR masked (dB) ↑ SSIM ↑
Uncorrected

CT-RATE 134.04 ± 11.02 21.15 ± 0.69 0.29 ± 0.02
HyperSight 65.31 ± 8.56 27.45 ± 1.18 0.47 ± 0.01

MInDI-3D

CT-RATE 20.70 ± 3.29 36.25 ± 1.24 0.97 ± 0.01
HyperSight 30.55 ± 4.44 33.61 ± 1.16 0.91 ± 0.01

3D U-Net

CT-RATE 20.75 ± 3.50 36.18 ± 1.25 0.97 ± 0.01
HyperSight 32.16 ± 4.81 32.98 ± 1.18 0.90 ± 0.01

Table 2: Performance comparison of MInDI-3D (2-step inference) and 3D U-Net (equivalent architecture
without time embedding) for correcting 50-projection reconstructions across CT-RATE (pseudo-CBCT)
and HyperSight (real-world) datasets showing mean ± standard deviation. While both models achieve
near-identical metrics on synthetic data (CT-RATE PSNR: 36.25 vs. 36.18, SSIM 0.97 vs 0.97), MInDI-3D
performs slightly better than the U-Net on real-world HyperSight scans (PSNR 33.61 vs. 32.98, SSIM 0.91
vs. 0.90).

Projections MAE masked ↓ PSNR masked (dB) ↑ SSIM ↑
Uncorrected

25 125.29 ± 16.24 21.81 ± 1.15 0.32 ± 0.01
50 65.31 ± 8.56 27.45 ± 1.18 0.47 ± 0.01
100 27.84 ± 3.58 34.70 ± 1.21 0.70 ± 0.02

MInDI-3D

25 48.03 ± 6.08 29.59 ± 1.00 0.86 ± 0.02
50 30.55 ± 4.44 33.61 ± 1.16 0.91 ± 0.01
100 24.62 ± 3.21 35.32 ± 0.94 0.93 ± 0.01

Table 3: MInDI-3Ds performance (2 step) across sparsity levels (25-100 projections) on the HyperSight
dataset (MAE, PSNR, SSIM vs. ground truth (mean ± standard deviation)), where even 25-projection
reconstructions achieve 62% lower MAE than uncorrected scans (48.02 vs. 125.29), validating its potential
to enable ultra-low-dose CBCT.
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Steps DICE score
Lung Left Lung Right Vertebrae Heart Ribs

MInDI-3D

1 0.96 ± 0.11 0.99 ± 0.00 0.95 ± 0.02 0.92 ± 0.03 0.89 ± 0.03
2 0.96 ± 0.11 0.99 ± 0.00 0.95 ± 0.02 0.92 ± 0.03 0.90 ± 0.03
3 0.96 ± 0.11 0.99 ± 0.00 0.95 ± 0.02 0.92 ± 0.03 0.90 ± 0.03
5 0.96 ± 0.11 0.99 ± 0.00 0.95 ± 0.02 0.92 ± 0.03 0.90 ± 0.03
10 0.96 ± 0.12 0.99 ± 0.00 0.95 ± 0.02 0.92 ± 0.03 0.90 ± 0.03
20 0.96 ± 0.12 0.99 ± 0.00 0.95 ± 0.02 0.91 ± 0.03 0.90 ± 0.03
30 0.96 ± 0.12 0.99 ± 0.00 0.95 ± 0.02 0.91 ± 0.03 0.90 ± 0.03

3D U-Net

1 0.97 ± 0.09 0.99 ± 0.00 0.94 ± 0.02 0.92 ± 0.02 0.89 ± 0.03

Table 4: Stability of anatomical segmentation under iterative refinement (sparse 50). DICE scores (mean
± standard deviation) for MInDI-3D (1-30 sampling steps) vs. 3D U-Net on HyperSight CBCT data,
benchmarked against full-dose ground-truth segmentations using Totalsegmentator. While U-Net achieves
comparable performance in single-step inference, MInDI-3D maintains stable segmentation results across
all anatomical structures (lung L/R: 0.96-0.99, vertebrae: 0.95, heart: 0.91-0.92, ribs: 0.89-0.90) despite
30 more sampling steps. Results exclude abdomen tumour patients because the analysed organs were not
consistently present in their scans.

Configuration MAE masked ↓ PSNR masked (dB) ↑ SSIM ↑
Uncorrected

134.04 ± 11.02 21.15 ± 0.69 0.29 ± 0.02

MInDI-3D: Dataset Size Ablation

64 subjects 29.93 ± 7.15 33.53 ± 1.47 0.94 ± 0.03
320 subjects 21.10 ± 3.36 36.08 ± 1.23 0.96 ± 0.01
3200 subjects 18.46 ± 1.82 37.25 ± 0.84 0.97 ± 0.01

MInDI-3D: Attention Block Ablation

no attention blocks 26.13 ± 7.92 34.06 ± 1.53 0.96 ± 0.02
1 attention blocks 22.09 ± 4.14 35.71 ± 1.40 0.97 ± 0.01
2 attention blocks 21.10 ± 3.36 36.08 ± 1.23 0.97 ± 0.01

Table 5: Ablation study of MInDI-3D (sparse 50, 1 step) performance on the CT-RATE dataset, evaluating
(1) training data scalability (64-3200 subjects) and (2) attention block design (0-2 blocks). Larger datasets
reduce reconstruction error (3200 subjects: MAE 18.46 vs. 29.93 for 64 subjects), while two attention blocks
optimise long-range dependency modeling (∆PSNR = +2.02 dB vs. no attention blocks). Metrics averaged
over test volumes versus ground truth.
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Figure 2: CBCT images (axial and coronal views) of a breast cancer patient (HyperSight dataset), from left
to right showing the sparse volume (50 projections), corrected volume using the MInDI-3D model, ground
truth volume and a difference plot (ground truth - corrected volume).

world HyperSight dataset. Performance was evalu-
ated based on feedback from 11 clinicians from the
Yonsei University Hospital, Seoul, South Korea. The
real-world CBCT scans differed from the simulated
training dataset, enabling assessment of the mod-
els’ generalisation capabilities. The primary differ-
ence between the training and test datasets was the
anatomic site: the training dataset consisted solely of
chest CTs, while the test dataset included scans of the
abdomen, breast, and lung. Additionally, the geom-
etry used varied, with the training dataset employ-
ing half-fan and full-trajectory scans, and the test
dataset using full-fan half-trajectory scans. We pro-
vided the clinicians with 16 paired CBCT volumes
for review. The sparse volumes were corrected with
the MInDI-3D model using 1 inference step and then
set side-by side to the full-dose volumes. In every
comparison, the tumour was highlighted on the plan-
ning CT for reference. The clinicians decided if the
corrected sparse-view image was sufficient for any of
the following tasks; positioning, contouring and/or
dose calculation. The clinicians categorised them-
selves into the two general categories of radiation on-
cologist (64%) and medical physicist (36%).

For the task of patient positioning, a large part
of clinicians agreed that this could be done using
the enhanced CBCT volumes for all the anatomi-

cal sites investigated (abdomen 96.4%, lung & breast
100%). For the task of dose calculation and contour-
ing, the responses were mixed. The acceptance rates
for the AI-enhanced CBCT volumes for dose calcu-
lation were 40.0% for the abdomen, 54.6% for the
breast and 69.7% for the lung scans. The acceptance
rates for contouring were 41.8%, 80.0%, 90.9% for the
anatomical sites abdomen, breast and lung respec-
tively. Lung scans had the highest acceptance rate,
while abdomen scans showed the lowest acceptance
rate overall. Overall, the MInDI-3D model demon-
strated strong clinical utility for patient positioning
across all anatomical sites, with mixed but generally
lower acceptance for dose calculation and contouring,
particularly in the abdomen, highlighting a need for
further refinement in these areas.

4 Discussion and Outlook

This work introduces MInDI-3D, the first, to our
knowledge, adaptation of the InDI framework to
3D and adapted to the medical field. Our findings
demonstrate that MInDI-3D not only effectively mit-
igates sparse-view artefacts, achieving quantitative
performance comparable to a 3D U-Net, but also of-
fers unique advantages in terms of a tuneable image
quality.
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Figure 3: Perception-distortion trade-off in progres-
sive sampling of MInDI-3D on the test set HyperSight
with 50 projections. The lineplot compares fidelity
(PSNR) and perceptual quality (FD DINOv2) across
sampling steps (1-10). Sampling with 2-5 steps im-
proves distortion (higher PSNR) compared to 1 step,
while further steps enhance realism (lower FD DI-
NOv2) at the expense of fidelity. Adjusting sampling
steps enables precise control over realism and fidelity:
steps beyond 2 prioritise perceptual quality, but op-
timal step counts may vary by anatomy.

We leverage a large-scale CT dataset via a pseudo-
CBCT pipeline, and made the resulting dataset pub-
licly available. This strategy successfully addresses
the common limitation of data scarcity in medical
imaging, and the observed scaling relationship be-
tween dataset size and performance (+3.72 dB PSNR
gain) underscores its value. The model’s robust gen-
eralisation across different anatomies, sparse-levels
and unseen acquisition geometries is particularly en-
couraging. It suggests that MInDI-3D learns funda-
mental principles of artefact reduction rather than
dataset-specific features.

The clinical relevance of MInDI-3D is multifaceted.
Task-based evaluations confirm that its iterative
refinements preserve crucial anatomical structures,
maintaining high segmentation accuracy (e.g., lung
DICE ≥ 0.96) even as perceptual quality is enhanced.
This addresses a key concern with generative and

deep learning models: ensuring that visual improve-
ments do not compromise diagnostic or treatment-
planning information. Direct clinical feedback sup-
ports the viability of MInDI-3D for clinical use in
specific tasks, such as patient positioning (90-100%).
The clinical tasks of dose calculation and contouring
showed more variability between the anatomical sites.
The superior acceptance rates for lung scans may re-
flect both inherent anatomical advantages (high con-
trast between tumour and surrounding tissue) and
domain consistency between training and test data
(chest).

While a direct comparison to other works is chal-
lenging due to differing reconstruction geometries,
our results demonstrate competitive performance, as
shown in Table 6. For example, Li et al. [21] re-
ported 2D PSNR improvements of 15.56 and SSIM
improvements of 0.636 for a sparse reconstruction
with 29 projections. Similarly, Lee et al. [22] achieved
2D PSNR improvements of and SSIM of 0.951 with
36 projections. Li et al. [45] achieved a 2D PSNR
of 31.29 and SSIM of 0.8471 with 30 projections.
It’s worth noting that these studies often include
background (air) in their error calculations and used
smaller datasets (only 10 volumes in [21,22]) for train-
ing and testing. Even with as few as 25 projections,
we achieve a PSNR of 36.81 and an SSIM of 0.95
across the entire volume with improvements of 20.20
and 0.77 for PSNR and SSIM respectively.

The perception-distortion trade-off observed with
MInDI-3D sampling steps mirrors findings in [19].
MInDI-3D users can adjust sampling steps to priori-
tise either quantitative fidelity or perceptual realism,
tailoring the output to specific clinical needs. This
flexibility is a key advantage, though finding the op-
timal balance and understanding its clinical impli-
cations across diverse scenarios remains an area for
further investigation.

Three key considerations arise. First, the pseudo-
CBCT simulation, while pragmatic, may not fully
replicate real-world scatter and motion artefacts.
Second, the perception metric (FD DINOv2) metric,
though validated for natural images, requires clinical
correlation with radiologist assessments in order to
be validated for a clinical setting, building on [62].
Third, while diffusion-based models risk introducing
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Method Projections PSNR SSIM PSNR
Improve-
ment

SSIM
Improve-
ment

Related Work

Lee et al. [22] 36 38.25 (2D) 0.949* (2D) – –
Li et al. [21] 29 38.21* (2D) 0.936* (2D) +15.56* +0.636*

Li et al. [45] 30 31.29 (2D) 0.847 (2D) +12.98 +0.617

Our Work: MInDI-3D

Validation set
(CT-RATE)

50 41.63 (3D) 0.97 (3D) +20.48 +0.68

Test set (Hy-
perSight)

50 30.34 (3D) 0.91 (3D) + 6.36 +0.44

Validation set
(CT-RATE)

25 36.81 (3D) 0.95 (3D) +20.20 +0.77

Test set (Hy-
perSight)

25 29.30 (3D) 0.86 (3D) +10.00 +0.54

Our Work: MInDI-3D (body masked)

Validation set
(CT-RATE)

50 37.29 (3D, masked) 0.97 (3D) +12.96 +0.68

Test set (Hy-
perSight)

50 33.55 (3D, masked) 0.91 (3D) + 6.10 +0.44

Validation set
(CT-RATE)

25 32.50 (3D, masked) 0.95 (3D) +13.45 +0.77

Test set (Hy-
perSight)

25 29.59 (3D, masked) 0.86 (3D) + 7.78 +0.54

Table 6: We compare our best results in terms of reconstruction quality with related work. Improvements
are computed relative to the analytical FBP reconstruction. * Indicates an average over the three planes
while bold indicates the best results.
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Figure 4: Comparing the MInDI-3D prediction of a lung tumour (lower right lung lobe) from a sparse 50
reconstruction with 1 vs. 30 steps (the ground truth and the difference of step 1 - step 30 as reference).
There is an increase of sharpness and detail from step 1 to step 30

synthetic anatomical features that could mislead clin-
ical interpretation, a critical concern in safety-critical
applications like radiotherapy planning, we proac-
tively mitigated this risk through a clinical evalua-
tion. However, future work should rigorously test
whether increased sampling steps (3 sampling steps
and above) retain anatomical accuracy. This could
be done by calculating the treatment dose at differ-
ent sampling steps to determine whether the dose es-
timation remains consistent.
Future work should further investigate the trade-

off between perceived image quality and anatomical
fidelity. Specifically, it is necessary to determine if
adding more iteration steps improves clinical usabil-
ity or if it inadvertently diminishes anatomical accu-
racy or enhances remaining artefacts. In this context
a systematic study could be conducted on how per-
ception metrics (e.g., FD DINOv2) that were trained
on natural images can be utilised to measure percep-
tion in 3D in a medical setting. While this study
has focused on image enhancement in the pixel space
further research could be conducted in enhancing im-
ages in a latent space, which should allow to train
deep learning models with a higher resolution in 3D.
Our implementation of MInDI-3D establishes con-

ditional generative-based models as viable tools for
sparse-view CBCT restoration, achieving clinically
acceptable image quality across multiple anatomical

sites for certain tasks related to radiation therapy.
The framework’s generalisation across datasets and
scaling with training size highlights the potential of
large-scale 3D medical imaging models to advance
adaptive radiotherapy.
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