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Abstract—As Artificial Intelligence (AI) systems are becoming
ever more capable of performing complex tasks, their prevalence
in industry, as well as society, is increasing rapidly. Adoption
of AI systems requires humans to trust them, leading to the
concept of trustworthy AI which covers principles such as
fairness, reliability, explainability, or safety. Implementing AI in
a trustworthy way is encouraged by newly developed industry
norms and standards, and will soon be enforced by legislation
such as the EU AI Act (EU AIA). We argue that Machine
Learning Operations (MLOps), a paradigm which covers best
practices and tools to develop and maintain AI and Machine
Learning (ML) systems in production reliably and efficiently,
provides a guide to implementing trustworthiness into the AI
development and operation lifecycle. In addition, we present an
implementation of a framework based on various MLOps tools
which enables verification of trustworthiness principles using the
example of a computer vision ML model.
Index Terms—AI, MLOps, explainability, trustworthiness

I. INTRODUCTION

Trustworthy AI (TAI) principles are anticipated to shape future
AI system regulations [1]. Despite their crucial role, these
principles often remain abstract, lacking concrete operational
mandates [2]. While emerging frameworks offer high-level
ethical guidelines for TAI, providing high-level addressing
principles like fairness, autonomy, control, transparency, re-
liability, security, and privacy (e.g., [3]), there remains a need
for technical guidelines and workflows.
In parallel, yet seemingly unrelated, the new and fast-evolving
field of Machine Learning Operations (MLOps) [4] takes
inspiration from the concept of DevOps (Development and
Operations) to establish methods, best practices, and tools
to operationalize an ML- or AI-based system (AIS), i.e., to
bring it into production. Covering all stages from project
setup and requirements to continuous integration/delivery, data
management, model development, testing, validation, deploy-
ment (including cloud and edge), monitoring, and continual
learning, a systems approach to MLOps ensures holistic align-
ment with specified objectives [5]. We show that MLOps
practices, besides streamlining deployment and maintenance of
AIS, can be naturally extended to address and assess specific
requirements on AI trustworthiness.
The remainder of this paper is structured as follows: section II
reviews existing research on integrating TAI into the ML

lifecycle. In section III, we provide a comprehensive map-
ping of TAI principles to both the MLOps lifecycle and the
practices underlying it. In section IV, we describe a concrete
implementation of TAI principles as part of an MLOps system.
Finally, section V discusses gaps and obstacles in the adoption
of MLOps for TAI and suggests avenues for future research.

II. RELATED WORK

A. Trustworthy AI in the ML lifecycle

Traditional performance metrics in ML need to be comple-
mented with additional principles as real-world applications
rise. Technical concerns like robustness, explainability, trans-
parency, reproducibility, and generalization, along with ethical
considerations such as fairness, privacy, and accountability
collectively fall under the term “trustworthy AI” [6]. This
concept is closely linked to “AI governance”, defined as “the
set of rules, regulations, ethical and technical frameworks, and
similar mechanisms that guide the development and deploy-
ment of artificial intelligence technologies.” [7].
Several studies integrate TAI elements into the ML lifecycle.
Laato et al. [8] include AI governance in common system
development lifecycle models, resembling MLOps. Ashmore
et al. [9] outline assurance desiderata for each ML lifecycle
stage and review existing methods. Li et al. [6] propose a
systematic approach to incorporate TAI in the ML lifecycle.
Despite recognizing the importance of a holistic approach
to trustworthiness across lifecycle stages, the literature lacks
integration of trustworthy AI with the growing adoption of
MLOps. Although a guide on adopting MLOps in the context
of responsible AI exists [10], it does not directly address how
MLOps practices map to TAI principles. Additionally, actual
real-world evaluations for existing approaches are scarce.

B. Metrics in MLOps

MLOps is driven by automation and metrics. Quality and
reliability, for instance, are measured and monitored through
metrics like mean time to restore and change failure rate
(percentage of deployments causing failure in production).
In machine learning, metrics guide training and testing. In
trustworthy AI, metrics serve a dual purpose. Firstly, they
enable the construction of effective feedback loops with quan-
tifiable measures for TAI principles in MLOps. Secondly, they



TABLE I
INTERRELATION OF MLOPS STAGES (COLUMNS), MLOPS PRACTICES (ROWS), AND TAI PRINCIPLES, I.E., AUTONOMY AND CONTROL (AC), FAIRNESS

(FN), PRIVACY (PR), RELIABILITY (RL), SECURITY (SE), TRANSPARENCY (TR). A“✓” DENOTES MLOPS PRACTICES APPLICABLE TO RESPECTIVE
STAGES. TAI PRINCIPLES LISTED AFTER THE “✓” INDICATE A PARTICULAR RELEVANCE OF THE PRACTICE TO THE LISTED PRINCIPLES.

Practice / Stage Business &
Data Understanding

Data
Engineering

ML Model
Engineering

ML Model
Evaluation Deployment Monitoring &

Maintenance

TAI Principles FN, PR, RL FN, PR, TR, RL AC, FN, PR, TR, RL FN, RL, TR AC, PR, RL, SE, TR AC, FN, RL, SE

Versioning ✓: TR, RL ✓: TR, RL ✓
Testing ✓: FN, TR, RL ✓: FN, RL, TR
Automation ✓ ✓ ✓ ✓
Reproducibility ✓ ✓ ✓ ✓
Deployment ✓
Monitoring ✓

may serve in definitions of and compliance to (upcoming) AI
regulation. An example in the context of the EU AIA is the
Key AI Risk Indicators framework for AI in the financial
services industry [11]. Yet, despite their practical relevance
and expected importance, the role of metrics in TAI has not
been fully addressed in the existing literature.

III. MLOPS AS ENABLER OF TRUSTWORTHY AI

In this section, we illustrate how MLOps enables TAI by
establishing the relationship of trustworthy AI principles with
MLOps concepts. For these principles, we rely on the six
dimensions of trustworthiness identified by the Fraunhofer
Institute [3]. For each principle, we report (a) the key stage(s)
of the ML lifecycle where it should be addressed, as well as
how it relates to the MLOps practices [12] (versioning, testing,
automation, reproducibility, deployment, and monitoring), and
(b) which metrics could be tracked to monitor progress of the
respective TAI principle. We follow the CRSIP-ML(Q) lifecy-
cle [13] for our MLOps lifecycle model, comprising the stages
“Business & Data Understanding”, “Data Engineering”, “ML
Model Engineering”, “ML Model Evaluation”, “Deployment”,
and “Monitoring & Maintenance”. Table I summarizes the
relation of trustworthy AI principles, MLOps lifecycle stages,
and MLOps practices.

A. Mapping Trustworthy AI Principles to the MLOps Lifecycle

a) Autonomy and Control (AC): This principle focuses on two
key elements: evaluating the appropriate level of autonomy for
the artificial intelligence application (e.g., human-in/on/out-of-
the-loop) and analysing how well the AI application supports
and allows adequate room for the individual’s interaction with
it. The key stages in the ML lifecycle for autonomy and
control are model engineering, deployment, and monitoring
& maintenance. Model engineering considers potential human
feedback. Deployment influences human control and model
use. Monitoring is vital for human oversight in the main-
tenance stage. Despite the importance of addressing these
concerns, there is limited research on achieving optimal human
control in the context of AI systems, and we are unaware of
potential metrics for this principle.

b) Fairness (FN): The fairness principle mainly aims to
prevent unjust discrimination in AI use, often caused by bi-
ased training data or statistical under-representation of certain
groups, leading to reduced quality for those groups. Regulatory
requirements highlight the importance of addressing fairness in
the planning stage. Technical interventions in data engineering,
model engineering, and evaluation can address issues like class
imbalances and group representation. Constraint enforcement
and ongoing monitoring in the model engineering and mon-
itoring stages, respectively, ensures compliance with fairness
criteria, with metrics categorized into individual, group, and
causality-based fairness [14].
c) Privacy (PR): This principle focuses on safeguarding sen-
sitive data during AIS development and operation, encompass-
ing personal data and business secrets. Similar to fairness,
privacy requirements often stem from regulations, necessitat-
ing early consideration in the planning stage, such as through
a privacy-by-design approach. Technical interventions in data
and model engineering involve practices like data minimiza-
tion, reducing attack surfaces, and implementing differential
privacy (DP) [15]. Privacy-related issues, including model
extraction and attacks like membership inference and model
inversion [16], must be addressed during deployment. Privacy
metrics serve a dual purpose: information-theoretic measures
quantify system privacy properties, while in the context of DP,
metrics like summary statistics assess the inherent privacy-
utility tradeoff [17], [18].
d) Reliability (RL): The reliability principle assesses the AIS’
quality, focusing on robustness and output uncertainties. Em-
phasized during model engineering and evaluation, practices
like certified training can enhance robustness [19]. Evaluation
includes testing model robustness via adversarial attacks and
formal verification [20], with certified accuracy as a popular
metric. Reliability extends to deployment, addressing potential
user adversarial actions and ensuring fast recovery. Monitoring
and maintenance involve close attention to reliability metrics.
An emerging approach involves integrating domain knowl-
edge [21], improving reliability and aiding in judging pre-
diction plausibility. Identifying applicable domain knowledge
should begin in the planning stage, becoming actionable in the



model engineering and evaluation stages.
e) Security (SE): Involving functional security properties and
safeguarding against attacks, Security encompasses measures
related to embedding the AI component. This includes tradi-
tional IT security methods and metrics (e.g. [22]). It directly
correlates with deployment and monitoring stages, akin to
traditional software solutions. Beyond established practices for
securing AIS, it must address the potential of AI to enhance
or compromise existing security measures [23].
f) Transparency (TR): Transparency in an AIS involves inter-
pretability, reproducibility, and explainability, assessing user
and expert comprehensibility, as well as result reproducibility
and explainability. Improving transparency aligns with MLOps
practices such as reproducibility and versioning, which are
crucial for comprehensive change tracking. The incorporation
of explainable algorithms and architectures enhances model
transparency. Throughout model evaluation, monitoring, and
maintenance, transparency is assessed using explainability
methods [24], providing insights for developers and potential
users. However, the absence of a standardized transparency
measure requires further research, as machine-based metrics
may not directly align with human relevance [25].

B. Trustworthy AI as an Iterative Process in MLOps

Due to the evolving nature of AIS and their complex post-
deployment, trustworthiness levels may fluctuate dynamically.
Continuous risk monitoring is crucial for responsible AI devel-
opment, aligning with the iterative nature of MLOps driven by
versioning, automation, testing, deployment, and monitoring.
The core tenet of continuous refinement can be extended
by the addition of trustworthiness metrics alongside accuracy
and efficiency. This enables the implementation of continuous
feedback loops, systematically addressing TAI requirements
throughout the entire AI lifecycle.

IV. CASE STUDY

In the preceding section, we presented how TAI princi-
ples map onto the MLOps practices and lifecycle stages.
This section shows an implementation of MLOps-supported
pipeline for the development of Trustworthy AI systems. Using
open-source MLOps software components, we automate the
assessment of reliability and transparency requirements for
computer vision (CV) models across the data engineering,
model engineering, and model evaluation stages. We eval-
uate the system’s capability to monitor trustworthiness for
various CV models and tasks, employing various reliability
and transparency methods [26]. For instance, for reliability,
robustness to perturbations is expected, which we evaluate
on both the data and model level, e.g. through estimation of
noise profiles of the training data, and simulation of domain-
specific perturbations. Regarding transparency, one example
is the identification of global explanations to model decisions
as part of model evaluation. For this, we extract factors of
variation and prototypes during the data engineering stage.
During model evaluation, the prototypes are used conjointly
with explanation methods [24].

Explanations

Source Code Source
repository

CI: build, test,
package

CD: pipeline
deployment

Data
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Data engineering
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Hyperparameters
Model weights
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store

Artefact
store

Preprocessed data

Fig. 1. Overview of the MLOps system architecture.

A. MLOps System Architecture

A spectrum of MLOps tools, encompassing both open-source
and proprietary solutions, is available. In alignment with
considerations for intellectual property and data protection, we
opted for established open-source tools suitable for in-house
deployment, except for the code repository, where we utilize
git versioning through GitHub1. We employ Oxen2 for data
versioning, while MLflow3 manages experiment and model
version tracking. Our system integrates GitHub Actions for
CI/CD and relies on Apache Airflow4 for efficient workload
scheduling. A schematic overview is given in fig. 1.

B. Workflow

The system reacts to changes in source code or data, initiating
CI/CD processes for code changes and triggering related
pipelines. Model code changes lead to the execution of training
and explanation pipelines. All resulting artifacts (e.g., model
weights, metrics) are stored and versioned in MLFlow for
analysis.
Data changes trigger data engineering pipelines, generating
training-ready data and artifacts (e.g. prototypes and noisy
samples) for model evaluation pipelines. This process includes
model retraining and evaluation, in turn generating model ex-
planations and reliability diagrams. The automated reliability
and transparency feedback loops prevent inadequate models
from reaching production. Monitoring data variation factors
and noise profiles aids in understanding cause-effect relations
between data changes and model performance, guiding future
data collection decisions. Ultimately, consistent adherence
to these MLOps feedback loops leads to a continuous and
automatic increase in trustworthiness.

V. DISCUSSION AND CONCLUSION

MLOps systems ought to be non-negotiable for organizational
productivity when developing or deploying AIS. Beyond pro-
ductivity, they enable TAI through automated feedback loops
and metrics, ensuring continuous assessment of TAI principles

1 https://github.com/ 2 https://www.oxen.ai/ 3 https://mlflow.org/
4 https://airflow.apache.org/

https://github.com/
https://www.oxen.ai/
https://mlflow.org/
https://airflow.apache.org/


across lifecycle stages. Using an appropriately scaling MLOps
system, this can be achieved regardless of project scale.
The framework also supports assessing conformity with inter-
nal or regulatory criteria. The relationship of MLOps and TAI
evolves bidirectionally: Akin to how privacy-by-design was
developed from a specific concern, MLOps evolves according
to such criteria. Conversely, upcoming standards on TAI are
informed by the technological state-of-the-art, which entails
MLOps.
The described system for MLOps-guided TAI-compatible ML
development is not exhaustive; real-world applications ne-
cessitate appropriate organizational structures and practices,
and adopting MLOps for TAI presents challenges, warranting
further research into specific hindrances:
Firstly, significant gaps exist among different trustworthy AI
principles, both in research and practical implementation.
Recent attention has focused on robustness and security, while
autonomy and control remains largely unexplored in the trust-
worthiness literature. Secondly, some principles are missing
adequate metrics. Transparency and explainability methods
mainly rely on human interpretation and thus cannot be
monitored automatically as part of an MLOps feedback loop,
or are machine-generated yet not guaranteed to be relevant for
human comprehension.
Finally, the overall implementation of MLOps is often im-
peded by a lack of clear standardization among MLOps tools.
This compels practitioners to develop custom interfacing code
for integrating their data and models, increasing friction and
impeding the widespread adoption of MLOps tools.
MLOps has the potential to enable trustworthy AI by creating
continuous feedback loops throughout the entire AI lifecycle.
To leverage this potential, we believe that future research
should address reducing the friction encountered in MLOps
adoption and seek to address the gaps in the existing trust-
worthy AI literature.
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