
Received: 4 December 2022 Revised: 25 February 2023 Accepted: 19 March 2023

DOI: 10.1002/mp.16405

R E S E A R C H A RT I C L E

Mitigation of motion-induced artifacts in cone beam
computed tomography using deep convolutional neural
networks

Mohammadreza Amirian1,2 Javier A. Montoya-Zegarra1 Ivo Herzig3

Peter Eggenberger Hotz3 Lukas Lichtensteiger3 Marco Morf3

Alexander Züst3 Pascal Paysan4 Igor Peterlik4 Stefan Scheib4

Rudolf Marcel Füchslin3,5 Thilo Stadelmann1,5 Frank-Peter Schilling1

1Centre for Artificial Intelligence CAI, Zurich
University of Applied Sciences ZHAW,
Winterthur, Switzerland

2Institute of Neural Information Processing,
Ulm University, Ulm, Germany

3Institute for Applied Mathematics and
Physics IAMP, Zurich University of Applied
Sciences ZHAW, Winterthur, Switzerland

4Varian Medical Systems Imaging Laboratory
GmbH, Baden, Switzerland

5European Centre for Living Technology,
Venice, Italy

Correspondence
Frank-Peter Schilling, Centre for Artificial
Intelligence CAI, Zurich University of Applied
Sciences ZHAW, Technikumstrasse 71, 8400
Winterthur, Switzerland.
Email: scik@zhaw.ch

Funding information
Innosuisse - Schweizerische Agentur für
Innovationsförderung, Grant/Award Number:
35244.1 IP-LS

Abstract
Background: Cone beam computed tomography (CBCT) is often employed on
radiation therapy treatment devices (linear accelerators) used in image-guided
radiation therapy (IGRT). For each treatment session, it is necessary to obtain
the image of the day in order to accurately position the patient and to enable
adaptive treatment capabilities including auto-segmentation and dose calcula-
tion. Reconstructed CBCT images often suffer from artifacts, in particular those
induced by patient motion. Deep-learning based approaches promise ways to
mitigate such artifacts.
Purpose: We propose a novel deep-learning based approach with the goal to
reduce motion induced artifacts in CBCT images and improve image quality.
It is based on supervised learning and includes neural network architectures
employed as pre- and/or post-processing steps during CBCT reconstruction.
Methods: Our approach is based on deep convolutional neural networks which
complement the standard CBCT reconstruction, which is performed either with
the analytical Feldkamp-Davis-Kress (FDK) method, or with an iterative alge-
braic reconstruction technique (SART-TV). The neural networks, which are
based on refined U-net architectures, are trained end-to-end in a supervised
learning setup. Labeled training data are obtained by means of a motion sim-
ulation, which uses the two extreme phases of 4D CT scans, their deformation
vector fields, as well as time-dependent amplitude signals as input. The trained
networks are validated against ground truth using quantitative metrics,as well as
by using real patient CBCT scans for a qualitative evaluation by clinical experts.
Results: The presented novel approach is able to generalize to unseen
data and yields significant reductions in motion induced artifacts as well as
improvements in image quality compared with existing state-of -the-art CBCT
reconstruction algorithms (up to +6.3 dB and +0.19 improvements in peak
signal-to-noise ratio, PSNR, and structural similarity index measure, SSIM,
respectively), as evidenced by validation with an unseen test dataset, and con-
firmed by a clinical evaluation on real patient scans (up to 74% preference for
motion artifact reduction over standard reconstruction).
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Conclusions: For the first time, it is demonstrated, also by means of clinical
evaluation, that inserting deep neural networks as pre- and post-processing
plugins in the existing 3D CBCT reconstruction and trained end-to-end yield
significant improvements in image quality and reduction of motion artifacts.
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cone beam computed tomography, deep learning, motion artifacts

1 INTRODUCTION

Cone beam computed tomography (CBCT) is a tech-
nique often used to acquire volumetric X-ray images
on board of radiation therapy treatment devices (lin-
ear accelerators) in image-guided radiation therapy
(IGRT),1 as well as interventional radiology and intra-
operative C-arm systems, providing higher spatial res-
olution in a cost-efficient way.2 In IGRT, treatment is
performed in up to 40 sessions. For each treatment ses-
sion, it is necessary to obtain the image of the day in
order to accurately position the patient. Besides, novel
applications of CBCT imaging in IGRT such as online
adaptive replanning3 or daily treatment planning and
dose calculation4 have been proposed.

There are two main families of reconstruction algo-
rithms used in modern CBCT scanners: (i) analytical
techniques and (ii) iterative algebraic algorithms. The
first group is inspired by filtered backprojection, and
most prominently represented by the Feldkamp-Davis-
Kress (FDK) method.5 The second group consists of
algorithms based on a reformulation of the recon-
struction as an optimization problem. Although the
development of iterative methods started in late 1960s,6

they have been employed on CBCT scanners only
over the last 15 years7,8 mainly because of their high
computational cost. In recent years, this problem was
solved due to the availability of GPUs. Iterative recon-
struction algorithms such as iCBCT introduced9 for
Varian’s Halcyon and TrueBeam addressed the need
for superior image quality compared with FDK, as
demonstrated10–13 in terms of better noise suppression
and improved contrast.

Imaging artifacts14 are still a prevalent complication in
CBCT reconstruction. The main sources of artifacts are
(i) electrical and photon count noise, (ii) photons from
scattered X-rays, (iii) extinction and beam hardening
effects (e.g., due to metal implants), (iv) approximations
in the reconstruction (due to finite beam width and detec-
tor pixel size), (v) aliasing (due to finite pixel size and
cone beam divergence), (vi) ring artifacts (due to defect
or miscalibrated detector elements), and (vii) patient
motion. Motion artifacts arise since the reconstruction
assumes that the scanned patient is stationary.However,
periodic respiratory or cardiac (breathing and heart beat
in the chest and lung region) and non-periodic (abrupt
motion of the patient, gas bubbles in the abdomen and
the digestive system) motion leads to acquiring pro-

jections from different states of motion. This leads to
evident and undesirable, typically streak-shaped image
artifacts after reconstruction. The following motion com-
pensation strategies are used so far in IGRT clinical
routine: (i) 4D or gated CBCT based on an external
breathing signal,15 (ii) breath hold CBCT based on an
external breathing signal and potential patient feedback,
(iii) assisted breathing based on a ventilator system,16

(iv) abdominal compression devices applied to the
patient,17 and (v) internal breathing signal extraction.18

In this paper, we present a novel approach to mit-
igate motion artifacts in CBCT reconstruction based
on deep learning. We embed the CBCT reconstruc-
tion within a deep learning pipeline, where convolutional
neural networks are employed as pre- and/or post-
processing steps. Those networks act on either the 2D
X-ray projections (preprocessing), the reconstructed 3D
volume (postprocessing), or on both. They are trained
end-to-end in a supervised fashion using CBCT scans
containing simulated motion, and providing a motion-
free state as ground truth. We show that the presented
novel approach is able to generalize to unseen data and
yields significant reductions in motion induced artifacts
as well as improvements in image quality compared
with existing state-of -the-art CBCT reconstruction algo-
rithms – up to +6.3 dB and +0.19 improvements in
peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM), respectively – as evidenced by validation
with an unseen test dataset, and confirmed by a qualita-
tive clinical evaluation on real patient scans (up to 74%
preference in motion artifact reduction).

1.1 Related work

Much research has been done14,19,20 regarding the
characterization and mitigation of the various kinds
of artifacts which negatively impact image quality in
CT and CBCT reconstruction. In recent years, deep-
learning based approaches have shown promising
results, including applications for IGRT and adaptive
radiation therapy.21 As the existing literature on deep-
learning based CBCT motion compensation is scarce,
and the developed methods generally are often appli-
cable to artifact types other than motion, as well as for
both CT and CBCT,we extend the discussion beyond the
field of CBCT motion artifacts, which is the main focus
of our study.
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The components of the filtered back-projection (FBP)
algorithm were mapped into a neural network by intro-
ducing a novel deep-learning enabled cone beam
back-projection layer.22 The backward pass of the layer
is computed as a forward projection operation. The
approach thus permits joint optimization of correc-
tion steps in both volume and projection domains.
More formally, it has been argued specifically23 that
implementing prior knowledge (such as the back-
projection operation) in the form of (differentiable)
known operators into a deep learning algorithm reduces
training error bounds while reducing the number of
free parameters.

In Limited-angle CT, a recent approach24 uses an
encoder–decoder architecture based on the U-net
model25 to reconstruct high-quality images. Images
reconstructed using the simultaneous algebraic recon-
struction (SART) method26 are processed by a U-net
to improve the image quality. Similarly, U-net-based net-
works were employed27 to correct limited-angle artifacts
in circular tomosynthesis scans.

Having gained traction in numerous fields including
CT imaging,28–30 deep-learning approaches have been
used for metal artifact reduction (MAR).31,32 A dual-
domain network (DuDoNet)33 was introduced to jointly
compensate for metal-induced artifacts in both projec-
tion and volume domains. Experimental results on the
DeepLesion CT dataset34 showed that the proposed
method outperformed both traditional and other deep-
learning approaches.An improved model (DuDoNet++)
was proposed35 to compensate for over-smoothed and
distorted image reconstruction and leads to improved
artifact correction. There have also been recent efforts
in MAR using unsupervised approaches,for instance the
artifact disentanglement network (ADN) model.36 The
U-DuDoNet model37 directly models the artifact gener-
ation and compensation process in both the projection
and image domains. More recently, interactive and inter-
pretable versions of DuDoNet called InDuDoNet38 and
IDOL-Net39 were introduced.

Neural network based approaches have been
employed to improve sparseness artifacts originating
from low-dose CT reconstruction.40–43 A new method
called AirNet44,45 fuses analytical and iterative CT
reconstruction integrated with deep learning to improve
sparse-data 3D and 4D CBCT reconstruction. In the
projection domain, deep-learning based correction of
signal degradation caused by X-ray photons that are
scattered within the patient body (scatter artifacts) has
been employed.46,47

Finally, the compensation of motion artifacts using
deep learning so far has received comparatively less
attention.An initial study48 demonstrated a U-net-based
artifact reduction method in the volume domain. A
U-net-based neural network was employed49 to com-
pensate simulated motion artifacts in head CT scans,
based on simple simulated rigid (translations, rotations,
oscillations) transformations. Motion artifacts in cine

cardiac MRI were reduced50 using recurrent neural net-
works, and cardiovascular motion in short-scan CT was
addressed by means of a deep partial angle-based
motion compensation (Deep PAMoCo) framework.51

Specifically for CBCT and including the 4D case,detect-
ing and avoiding slices with considerable motion arti-
facts has proven to be a promising strategy to reduce the
negative effect of motion artifacts.52 CNNs were used
to reduce streak artifacts caused by fewer projections
for each breathing phase to reconstruct motion-resolved
4D CBCT scans.53 This was extended to using deep
learning through prior-guided CNNs to alleviate sparse-
ness streaks using the information of the same volume
in different breathing phases.54 The quality of motion
resolved 4D CBCT scans can also be improved using
dual-encoder convolutional neural networks (DeCNN)
to realize an average-image-constrained 4D CBCT
reconstruction.55

2 MATERIALS AND METHODS

2.1 CBCT reconstruction

To reconstruct a 3D CBCT volume from 2D cone beam
projections (which we here assume to have already
been corrected based on knowledge of the acquisition
hardware, for example, for beam hardening and scat-
tering), both analytical and iterative methods are con-
sidered. Feldkamp-Davis-Kress5 (FDK) is an analytical
reconstruction method based on filtered back-projection
(FBP). Although the Tuy data-sufficiency conditions56

are not met for circular trajectories of a cone beam
source, FDK provides a fast and reliable approxima-
tion of the inverse Radon transform and has become
a gold standard for 3D CBCT reconstruction.57 In our
implementation, the Ram-Lak filter is used to compen-
sate for the radial non-uniformity of the sampling density
and additional filtering is applied to the projections:
Since FDK is applied to datasets acquired with half -fan
geometry – that is, a full 360◦ trajectory with detector
shifted to one direction to increase the field of view–
it is necessary to apply half-fan weighing to avoid the
duplicity of data. This is followed by cosine weighting
to decrease the longitudinal fall-off effect due to the
cone beam geometry. Finally, the projections are down-
sampled so that their resolution matches the cut-off
frequency requirement given by the target resolution of
the reconstructed volume.

Besides FDK, we also use the algebraic reconstruc-
tion technique (ART) which is an iterative method
originally based on the Kaczmarz algorithm.58 It approx-
imates the volume f by an iterative optimization of the
data-fidelity cost function |Af − p|2 where A and p rep-
resent the forward-projection operator and projection
in attenuation space, respectively. In each iteration k,
an update of the actual volume estimation is computed
through the back-projection of the gradient of the cost

 24734209, 2023, 10, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16405 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [21/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MITIGATION OF MOTION ARTIFACTS IN CBCT 6231

function, that is,
∑

𝛼
A⊤([Afk ]𝛼 − p𝛼) where p𝛼 and [Afk ]𝛼

denote the projection under angle 𝛼 and correspond-
ing forward-projection of actual volume estimation fk ,
respectively, and A⊤ represents the back-projection
operator. One of the advantages of iterative methods
is that they allow for a straightforward injection of prior
knowledge into the reconstruction process through a
regularization term augmenting the cost function being
optimized. In our implementation, we employ the edge-
preserving total variation (TV) regularization which
helps to reduce noise as well as cone beam artifacts in
the areas far from the iso-center.

In order to significantly reduce the computational cost,
our GPU implementation of ART is further accelerated
through the following approaches: First, the version of
ART known as simultaneous ART (SART) is used where
the volume is updated in parallel for each input pro-
jection. Furthermore, ordered subsets (OS)59 and the
Nesterov momentum method60 are employed. Finally,
a destination-driven approach61 is employed in forward
projection (only for ART) and backward projection (both
ART and FDK). The method has been discussed62 as
TV-regularized OS-SART with momentum as part of the
iCBCT algorithm deployed clinically in Varian products.

2.2 Motion simulation

To train our models, we use a respiratory motion
simulation63 that generates synthetic sets of CBCT vol-
umes with motion artifacts. It uses phase gated 4D CT
scans described in Section 2.3 and an independently
recorded set of breathing curves. We use DEEDS64 to
perform a deformable registration between CT volumes
of the end-inhale and end-exhale phases to create
a patient-specific deformation vector field (DVF). We
deform the CT volumes by scaling the DVFs accord-
ing to the breathing amplitude at a given time to create
a forward projection at each angular step in the simu-
lated CBCT scan. This yields a full set of projections
where each projection corresponds to a different respi-
ratory state. We then reconstruct a volume using either
the FDK or SART-TV reconstruction algorithms to create
the CBCT volumes with motion artifacts.

In order to facilitate supervised learning, we gener-
ate ground-truth volumes using two different methods:
In the first method, called “average volume”, we take
the average of all deformed volumes which result from
application of the DVF scaled with the breathing sig-
nal amplitude matching the acquisition time offset at
each angular step. The second method, called “average
amplitude”, corresponds to a single deformed volume at
a fixed time offset matching the average amplitude of
the breathing signal. While the motion-averaged ground
truth is used more often in previous research62 on
motion compensation, images based on this method
tend to smoothen sharp edges. On the other hand,
images based on the average-amplitude method are

able to retain more sharp details. The two methods
will be compared in the quantitative as well as clinical
evaluation of our approach.

Data augmentation is implemented by:(i) applying dif-
ferent breathing curves to the scan, (ii) changing the
overall motion amplitudes and (iii) shifting the field-of -
view in z-direction.Figure 1 shows an example of typical
motion artifacts created by patient motion in real CBCT
data (test dataset,see Section 2.3) side-by-side with the
emulated motion artifacts from our motion simulation.

2.3 Datasets

For the training and validation of the different methods,
we used a set of thoracic 4D CT scans of 80 patients,
split into fractions of 60% (20%,20%) as training (valida-
tion, test) datasets. The 4D CT scans were provided as
input to the motion simulation described in Section 2.2.
We simulate a CBCT scan with 720 projections (size
320 × 76 pixels, resolution 1.344 × 4.032 mm) using the
Halcyon geometry, and a scanning time of 15 s (24◦∕s),
representing a simplified Halcyon scan.

To simulate plausible and diverse motion patterns
during a virtual CBCT acquisition, we employed a set
of 150 recorded free-breathing amplitude signal traces
obtained using the Varian Real-time Position Manage-
ment (RPM) system. The breathing traces used for
augmentation are randomly selected from the breath-
ing curves dataset.They contain minor irregularities and
baseline drift within the short scanning time.

For the testing of the developed methods on real
CBCT patient scans a set of Halcyon thoracic CBCT
scans was employed (real-world test dataset). All pre-
processed projection data and reconstructed volumes
were given at the same size, resolution, and geometry
to ensure consistency: There are typically between 489
and 697 projections, with one scan having 858 projec-
tions, of size 320 × 76 pixels (resolution 1.344 × 4.032
mm) for each patient,and the volume size is 256 × 256 ×
48 voxels (2 × 2 × 3 mm).The source-to-imager distance
is 154 cm with a detector offset of 17.5 cm. The acqui-
sition time of the scans varies typically between 16.5
and 24.7 s, with one scan each at 30.8 and 40.5 s, and
the test dataset includes both free-breathing and breath-
hold scans. The projection count, acquisition time, and
variable scan velocity are determined by the Halcyon
machine standard acquisition protocols.

2.4 Deep-learning enabled CBCT
reconstruction

This section presents the core methodology used to cor-
rect motion artifacts in CBCT images using deep learn-
ing. Motion leads to inconsistencies in the acquired pro-
jections,which appear as artifacts in the volume domain
after reconstruction. Therefore, motion corrections can
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6232 MITIGATION OF MOTION ARTIFACTS IN CBCT

F IGURE 1 Motion artifacts. Top: CBCT image with motion artifacts from the test dataset. Bottom: Image with artificially produced motion
artifacts from the motion simulation (images are presented in HU with window and level W/L=1000/0).

be, in principle, applied before and/or after reconstruc-
tion. These correction steps are implemented as train-
able neural networks derived from 3D encoder–decoder
type architectures. The reconstruction algorithm used is
either FDK or iterative CBCT (SART-TV) reconstruction,
as discussed in Section 2.1.These algorithms are based
on differentiable forward- and backprojection layers
implemented with custom CUDA code and interfaced
as PyTorch modules. In order to allow back-propagation
of gradients in the case of learning in the projection

domain, the CBCT reconstruction step has to be fully dif-
ferentiable, which is not practical for the iterative recon-
struction. Thus, projection- and dual-domain motion
compensation is restricted to the FDK reconstruction.

We employ a supervised learning approach based
on a simulated motion dataset (Section 2.2) for train-
ing the motion compensation networks, where the loss
is calculated in the volume domain. The ground truth is
either calculated as the motion-averaged volume (“aver-
age volume”) or given as the volume corresponding to
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MITIGATION OF MOTION ARTIFACTS IN CBCT 6233

the fixed motion state matching the average breathing
signal amplitude (“average amplitude”). The networks
are validated on the held-out validation and test portions
of the simulated motion dataset and on an indepen-
dent real-world test dataset containing real CBCT scans
(see Section 2.3). In detail, the reconstruction pipeline
consists of the following components:

Projection Enhancement Network (PE-Net): To mit-
igate motion-induced artifacts in the projection domain,
we rely on convolutional neural networks based on
architectures explained in more detail in the next sec-
tion. PE-Net receives as input the acquired projections
{proj ∈ ℝHp×Wp×Cp}, and enhances these projections
{̂proj}, that is, fpe_net(proj) → ̂proj to remove motion
effects in the projection domain. Here, Hp × Wp × Cp
denote the projection dimensions in terms of height,
width, and number of projections.

Projection-to-Volume Reconstruction Layer: The
projection-to-volume reconstruction layer frec(⋅) receives
as input the (enhanced) projections {̂proj} and out-
puts a reconstructed volume {vol ∈ ℝHv×Wv×Cv }, that
is, frec(̂proj) → vol : ℝHp×Wp×Cp → ℝHv×Wv×Cv , where
Hv × Wv × Cv represent the volume’s height, width, and
number of slices. This layer corresponds to the regular
FDK or SART-TV reconstruction (Section 2.1).

Volume Enhancement Network (VE-Net): The VE-
Net fve_net(⋅) is responsible for enhancing the recon-
structed volume and for compensating motion artifacts
in the volume domain. As output, the VE-Net pro-
duces an enhanced volume {̂vol ∈ ℝHv×Wv×Cv }, that is,
fve_net(vol) → ̂vol.

Our proposed end-to-end model, shown in Figure 2,
combines the above components for motion correction
in both projection and volume domain. It consists of
three different modules: (i) a projection enhancement
network (PE-Net),a (ii) projection-to-volume reconstruc-
tion layer, and a (iii) volume enhancement network
(VE-Net).

We next describe the different model blocks of
our proposed architecture, which is derived from the
standard 3D U-net25 architecture with refinements as
discussed below.Note that these blocks are used in both
PE-Net and VE-Net.

Encoder Blocks:The encoder block of the presented
architecture in Figure 2 consists of four similar submod-
ules including a 3D convolutional layer with filters of size
3 × 3 × 3, followed by an instance normalization,65 the
Swish activation function66 and a 3D max-pooling layer
of size 2 × 2 × 2. The number of convolutional filters in
the first block is doubled for every next layer; hence, the
latent representations of the input volume have a larger
number of channels but a smaller spatial size with a
higher receptive field after the first layer.

Decoder Blocks: The decoder block aims at comput-
ing the motion corrections from latent representations
and has four submodules starting with a trilinear upsam-

pling followed by a 3D convolutional layer with filters
of size 3 × 3 × 3, instance normalization, and Swish
activation function. The number of convolutional filters
is halved after each layer to make the entire model’s
architecture symmetric.

Attention Mechanisms: To further compensate for
motion artifacts, our model relies optionally on atten-
tion mechanisms. As part of the bottleneck- and
decoder-blocks of both Projection Enhancement (PE-
Net) and Volume Enhancement (VE-Net) networks, we
add channel-wise and spatial attention layers67 in 3D.
More precisely, given a 3D intermediate feature map
F ∈ ℝC×D×H×W , the attention mechanism infers first a
channel-wise attention map Mc ∈ ℝC×1×1×1 that helps
the network to focus on useful channels. Its output is
element-wise multiplied with the intermediate feature
map F to re-weight the importance of each channel and
generates a new feature map Fc ∈ ℝC×D×H×W .The spa-
tial attention mechanism follows the channel attention
mechanism and aids the network to enhance informative
spatial local regions by inferring a spatial attention map
Ms ∈ ℝ1×D×H×W . Its output is then multiplied with the
channel-attention feature map Fc to re-weight the impor-
tance along the spatial domain and generates a new
feature map Fs ∈ ℝC×D×H×W . The complete channel-
wise and spatial-wise attention mechanism is given by:

Fc = Mc(F) ⊗ F

Fs = Ms(Fc) ⊗ Fc

By using these attention layers, the model is capable of
focusing on and learning more relevant features. More
precisely, the attention mechanism aids the network on
what to focus and on where to focus. Models including
attention layers are denoted “Attn.” in Table 1.

Residual Learning: Using residual learning is crucial
to simplifying the learning task and improving the con-
vergence speed. The architecture depicted in Figure 2
uses two components to enhance the gradient flow and
simplify the learning task. We generally used a direct
residual connection from input to output (“residual learn-
ing”) to optimize the required corrections instead of
reconstructing the ground truth. In addition, we option-
ally used internal residual connections between the
input and output of the individual convolutional lay-
ers to improve the gradient flow.68 Networks including
such residual connections within layers are labeled as
“ResUNet” in Table 1.

2.5 Metrics

In our experiments, we report the numerical perfor-
mance using several quantitative metrics69 sensitive
to the similarity of pairs of projections or volumes
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6234 MITIGATION OF MOTION ARTIFACTS IN CBCT

F IGURE 2 Architecture of the proposed end-to-end model, consisting of a projection enhancement network (PE-Net), a
projection-to-volume reconstruction layer, and a volume enhancement network (VE-Net).

(x, x′). These include root mean squared error
RMSE =

√
MSE, where MSE(x, x′) = 1

N

∑
i ||xi − x′i ||2,

peak signal-to-noise ratio PSNR = 10 log10(MAX2

MSE
),

and SSIM).69 In addition, we quote the mean and
standard deviation of the difference image (x − x′)
used for reducing the motion artifacts. All metrics are
calculated in Hounsfield units (HU) from pairs of uncor-
rected or corrected body-masked volumes and their
corresponding ground truth counterparts.

2.6 Experiments

This section describes the experimental setup, architec-
tural variants, optimization settings and implementation
details used.

Experimental Setup:We set the volume size to 256 ×
256 × 48 voxels based on the neural network architec-

tures used in this study and to optimize computational
and memory costs. Based on the training dataset dis-
cussed in Section 2.3, we use 720 projections of size
320 × 76 for training, and we add motion artifacts to the
original CT volumes using the motion simulation intro-
duced in Section 2.2. The reconstruction and forward
projection geometry is selected to match the real-world
test dataset as closely as possible, used in this study for
clinical evaluation (Section 2.3).

Data Augmentation: We used five different patient
breathing curves as input to the motion simulation for
each original CT scan in the training dataset. This led
to a considerable boost in the final performance of our
motion correction models.

Model Architecture: The baseline model we initially
considered for motion correction was a U-net with resid-
ual learning from input to output as depicted in Figure 2.
A plain U-net25 architecture without residual connec-
tions is already sufficient for correcting the artifacts
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MITIGATION OF MOTION ARTIFACTS IN CBCT 6235

TABLE 1 Quantitative results of deep-learning based motion correction for CBCT data with simulated motion.

Model Architecture RMSE ↓ PSNR (dB) ↑ SSIM ↑ Mean±stdev

Baseline (Average volume GT)

FDK 77.8875 28.3802 0.8086 −

SART-TV 76.2560 28.6741 0.8701 −

Baseline (Average amplitude GT)

FDK 86.9695 27.5059 0.7992 −

SART-TV 106.5914 25.6087 0.7304 −

Volume-Domain (Average volume GT)

3D-UNet (FDK) 38.27(−39.62±9.06) 34.72(6.34±1.45) 0.9585(0.1499±0.0412) 0.0154±38.2148

3D-ResUNet (FDK) 39.86(−38.03±10.53) 34.32(5.94±1.63) 0.9495(0.1410±0.0457) −8.2486±38.8685

3D-ResUNet+Attn.(FDK) 39.65(−38.24±8.58) 34.35(5.97±1.17) 0.9559(0.1473±0.0406) −1.9394±39.5164

3D-UNet (SART-TV)† 44.20(−32.05±14.65) 33.32(4.65±1.79) 0.9481(0.0780±0.0400) −3.7927±43.9936

3D-ResUNet (SART-TV) 44.80(−31.46±14.67) 33.22(4.54±1.80) 0.9464(0.0763±0.0385) −1.9903±44.7111

3D-ResUNet+Attn.(SART-TV) 45.75(−30.50±15.01) 33.05(4.37±1.89) 0.9377(0.0676±0.0406) −6.0158±45.2901

Volume-Domain (Average amplitude GT)

3D-UNet (FDK) 51.67(−35.30±11.08) 32.10(4.59±1.10) 0.9410(0.1418±0.0431) −3.5407±51.4552

3D-ResUNet (FDK) 51.28(−35.69±11.87) 32.14(4.63±1.16) 0.9417(0.1425±0.0432) −2.9049±51.1370

3D-ResUNet+Attn.(FDK) 51.87(−35.10±11.78) 32.03(4.52±1.15) 0.9326(0.1335±0.0456) −6.9976±51.2475

3D-UNet (SART-TV)† 55.42(−51.17±11.50) 31.42(5.81±1.33) 0.9300(0.1996±0.0656) 0.7139±55.2177

3D-ResUNet (SART-TV) 55.76(−50.83±12.06) 31.35(5.75±1.39) 0.9282(0.1979±0.0634) −4.0567±55.4900

3D-ResUNet+Attn.(SART-TV) 58.78(−47.81±11.28) 30.88(5.27±1.28) 0.9131(0.1828±0.0598) −11.9311±57.1327

Projection-Domain (Average volume GT)

3D-UNet (FDK) 73.88(−4.01±1.88) 28.89(0.51±0.33) 0.8654(0.0569±0.0165) 3.8085±73.5703

3D-ResUNet (FDK) 67.91(−9.98±4.86) 29.68(1.30±0.78) 0.8931(0.0845±0.0224) −1.2820±67.7729

3D-ResUNet+Attn.(FDK) 67.68(−10.21±7.28) 29.71(1.33±0.98) 0.8940(0.0855±0.0232) −1.5657±67.5189

Dual-Domain (Average volume GT)

3D-UNet (FDK) 49.19(−28.70±6.19) 32.43(4.05±0.62) 0.9377(0.1292±0.0349) −0.2131±48.9999

3D-ResUNet (FDK) 45.51(−32.38±8.13) 33.07(4.69±0.73) 0.9425(0.1339±0.0406) −8.9502±44.4396

3D-ResUNet+Attn.(FDK) 45.65(−32.24±9.07) 33.00(4.62±0.82) 0.9396(0.1311±0.0425) −9.7962±44.3982

The table presents the performance of our proposed motion reduction framework based on the RMSE, PSNR, and SSIM metrics, as well as the mean and standard
deviation of the body-masked difference (correction) volumes. The metrics are calculated between the reconstructed and ground truth volumes (using either “average
volume” or “average amplitude” ground truth (GT), see text), converted to HU with slope and intercept of 48 200 and -1106, respectively. All numerical values are
averaged over the test set. To make the contribution of the motion correction clearer, we report the average metric together with the average gain (or loss), as well as
the standard deviation of the latter. For example, in the last row, the average PSNR is reported as 33.00 dB, corresponding to an average improvement of 4.62 dB,
with a standard deviation of 0.82 dB. The models noted by † are used for clinical evaluation (Section 3.2).

in the volume domain; however, residual learning is
necessary for the more complicated tasks, including
projection- or dual-domain optimization. Therefore, all
of our models include residual learning. We used a U-
net-based model with a depth of 4 and 32 filters in the
first layer. After that, we double the number of filters per
layer until the model’s bottleneck in the middle and the
architecture is reverted afterwards. The same architec-
ture is used for both PE-Net and VE-Net. In the case
of dual-domain learning, we use a combination of two
such models. For PE-Net, the models process the pro-
jections in chunks of 192 due to memory limitations.
Alternatively, we employed the same architectures, but
extended with internal residual connections (“ResUNet”)
and/or channel-spatial attention (“Attn.”).

Implementation and Optimization Settings: We
implemented and trained the motion compensation
models using the PyTorch70 framework. The experi-
ments were performed on NVIDIA V100 or A100 GPUs
with 32 (40) GB of VRAM. Both projections and vol-
umes are normalized to have zero mean and unit
variance. We optimize our models by minimizing the
difference between the predicted and reconstructed vol-
ume as computed by the 𝓁1-norm=

∑
i ∥ xi − x′i ∥ using

the AdamW71 optimizer with a constant learning rate
of 1.4 ⋅ 10−6 and weight decay of 1.9 ⋅ 10−8 in the pro-
jection domain, and a learning rate of 1.1 ⋅ 10−4 and
weight decay of 1.4 ⋅ 10−8 in the volume domain. These
parameters result from a joint hyperparameter optimiza-
tion together with other parameters such as number of
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6236 MITIGATION OF MOTION ARTIFACTS IN CBCT

convolutional filters,kernel size,or convolutional dilation.
We used a batch size of 1 (due to GPU memory lim-
itations), and trained the models for a total number of
300 epochs. After the training, we select the model that
reduces the validation loss the most.

3 RESULTS

3.1 Quantitative results

In order to train our neural network architectures
(Figure 2) in a supervised scenario, we used the train-
ing set of the simulated motion dataset (Section 2.3).
Table 1 presents the numerical performance of the
architectures discussed in Section 2 for the two recon-
struction methods FDK and SART-TV, with two different
sets of ground truth volumes (“average volume”or “aver-
age amplitude”). Three different neural network archi-
tectures are employed for experiments in projection-,
volume- and dual-domain: “3D-UNet” (base architec-
ture), “3D-ResUNet” (base enhanced with ResUNet),
and “3D-ResUNet+Attn.” (base enhanced with both
ResUNet and attention blocks). The ground truth vol-
umes with average amplitude differ more from their
corresponding uncorrected volumes with motion arti-
facts than the ones with averaged volume. Therefore,
the baseline RMSE is larger for average amplitude,
and lower baseline performances in terms of PSNR
and SSIM are reported in Table 1. Since computing
the gradients in the backward pass of the reconstruc-
tion algorithm, which is required for training models
in the projection-domain, is only practical for the FDK
reconstruction,we do not report results based on SART-
TV for optimizing in projection- and dual-domain. The
numerical results are reported based on computing
the metrics as introduced in Section 2.5 between the
body-masked ground truth and reconstructed volumes,
converted to HU.

The numerical evaluation demonstrates that training
3D CNNs is consistently successful in compensating
motion for deep learning in the projection, volume and
dual domain, and the best performance is achieved in
the volume domain. Numerically, it corresponds for FDK
to an improvement of +6.34 dB in PSNR and +0.1499
for SSIM with “average volume” ground truth. The high-
est improvement reported for SART-TV is +5.81 dB in
PSNR and +0.1996 for SSIM with “average amplitude”
ground truth. We also observed a very competitive per-
formance in dual domain optimization.However,most of
the motion correction performance in the dual domain
setting is based on the volume domain corrections.
The maximum average gained PSNR in the case of
pure projection domain optimization turned out to be
+1.33 dB.

The above results represent the first successful
attempt at reducing motion artifacts globally in 3D

CBCT scans using deep neural networks.The proposed
method reduces motion artifacts for two reconstruction
techniques (FDK and SART-TV),and with several differ-
ent architectures, including variants with added internal
residual connections and/or channel-spatial attention.
The motion compensation performance shows a small
but consistent variance with the details of the neural
network architecture.

Comparing the two CBCT reconstruction algorithms,
SART-TV shows more robustness against motion during
acquisition time,and a slightly lower drop in baseline per-
formance is reported.Motion artifact reduction using 3D
CNNs in the volume domain for SART-TV reconstruc-
tion is successful and performs better compared with
FDK reconstruction. Figures 3 and 4 present example
visualizations of the observed motion artifact improve-
ments in volume domain learning applied to the FDK and
SART-TV reconstructed volumes, respectively.

3.2 Clinical evaluation

To validate the quantitative results of the previous sec-
tion in a clinical setting, we applied the trained motion
compensation CNN models to a real-world test dataset
(see Section 2.3 and Figure 5) and evaluated the perfor-
mance based on the feedback obtained from clinicians.
The real-world CBCT scans used in this study are suf-
ficiently different from the simulated training dataset to
judge the models’ generalization capabilities, for exam-
ple, concerning projection count and HU calibration. To
compensate for the different calibration,we rescaled the
attenuation values of the real-world test dataset to a
scale matching the one of the training dataset.

To collect the clinicians’ feedback, we provided them
with 30 pairs of SART-TV reconstructed and motion-
corrected volumes, 15 each using either average-
amplitude or average-volume as ground truth. We
computed the motion corrections based on the devel-
oped motion compensation framework and using the
best-performing CNN architectures, that is, 3D-UNet
in the volume domain without residual connections
or attention, from Table 1. Subsequently, in total 20
clinicians – including radiation oncologists, medical
physicists, radiation technologists and physicians –
answered several questions about their preferences for
using CNN models to reduce motion artifacts compared
with the standard reconstruction. The clinicians identi-
fied themselves into three general categories of medical
physician (26%), physicist (37%), or dosimetrist/radiation
technician (37%).

Initial feedback received on the SART-TV datasets
indicated the presence of severe and mild unavoidable
real-world artifacts besides motion in 34% and 20% of
the scans, respectively. The clinical experts determined
the level of severity of artifacts besides motion through
an additional question asked for each scan. The study
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MITIGATION OF MOTION ARTIFACTS IN CBCT 6237

F IGURE 3 Example result for FDK reconstruction (volume domain optimization). Presented are the uncorrected volume using default
reconstruction (top), the ground truth volume, both as absolute image and its difference with the uncorrected volume, (“average volume” ground
truth, middle), as well as the corrected volume and its difference (bottom). Images are presented in HU with W/L=1000/0.

participants were asked to indicate their level of agree-
ment or preference with respect to (a) a reduction of the
observed motion artifacts and (b) the usage of motion-
corrected volumes for various applications including
dose calculation, patient positioning or segmentation.

This clinical evaluation, the first of its kind to the best
of our knowledge, faced the challenge of subjective
assessments from experts with different clinical back-
grounds. For example, physicians reported a noticeable
or strong improvement in CNN-based motion artifact
reduction using average volume ground truth in 80%
of the scans, while for medical physicists this num-
ber is only 66%. On the other hand, medical physicists
expressed preference for using CNN-corrected volumes
for dose calculation in 63% of the cases,while physicians
reported only 31%.

We averaged all votes and present the final results
in Table 2. Despite the differences in the improvements
reported by the different expert groups, there is a clear
positive trend that the proposed CNN models are indeed
able to reduce motion artifacts successfully. In addition,
clinicians reported a weak tendency toward using CNN-
corrected images (computed by models trained using

average volumes as ground truth) for plan adaptation
and dose calculation.On the other hand,clinical experts
expressed a preference to rather use images without
CNN-based reconstruction for soft-tissue-based patient
positioning as well as for manual or automatic tissue
segmentation, as these images are typically sharper
compared with the CNN-corrected ones. Regarding
the choice of ground truth when training the mod-
els, the results suggest that “average volume” ground
truth based images are preferable for dose calculation
due to their time-averaged representation of the mass,
while “average amplitude” ground truth based images
are preferable for segmentation due to the contrast at
organ boundaries.

In response to the above result, we decided to per-
form a quantitative evaluation to compute the level of
agreement between CBCT images with and without
motion artifact correction when applying an automatic
segmentation algorithm to both sets of scans. We com-
puted the average dice score over 18 organs or tissues
which are visible in most of the CBCT images, includ-
ing pulmonary arteries, breast, chest wall, lung, ribs, and
spinal canal. The high dice score of 0.89 (0.88) when
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6238 MITIGATION OF MOTION ARTIFACTS IN CBCT

F IGURE 4 Example result for SART-TV reconstruction (volume domain optimization). Presented are the uncorrected volume using default
reconstruction (top), the ground truth volume, both as absolute image and its difference with uncorrected volume, (“average volume” ground
truth, middle), as well as the corrected volume and its difference (bottom). Images are presented in HU with W/L=1000/0.

TABLE 2 Results of the clinical evaluation.

Ground Truth → Average volume Average amplitude
↓ Application/Preference → CNN (%) Equal (%) Standard (%) CNN (%) Equal (%) Standard (%)

Motion artifact reduction 74.00 26.00 − 58.33 41.67 −

Plan adaptation and dose calculation 49.33 22.00 28.67 26.33 17.33 56.33

Soft-tissue-based patient positioning 23.00 12.67 64.33 13.00 7.00 80.00

Manual and automatic tissue segmentation 24.33 14.67 61.00 13.00 10.33 76.67

Presented are preferences for CNN-based or default SART-TV reconstruction when training CNN models using either average volume or average amplitude ground
truth. The clinicians expressed their opinion on the capability of CNN-based models for motion artifact reduction, as well as for potential applications such as plan
adaptation and dose calculation, patient positioning or segmentation.

using average volume (average amplitude) ground truth
demonstrates a very high level of consistency between
the obtained segmentation contours, despite the low
preference reported by clinical experts to use the motion
corrected images for segmentation.

4 CONCLUSION

In this paper, we presented, for the first time to the best
of our knowledge, a deep-learning based method for

globally reducing motion artifacts in reconstructed 3D
CBCT images, building on top of the two reconstruction
algorithms FDK and SART-TV.

We implemented neural network architectures which
act either on the reconstructed CBCT volumes, on
the input X-ray projections, or on both for end-to-end
dual-domain optimization. The proposed models were
trained in a supervised way using a motion simulation
framework that provides motion-free ground truth. The
experimental results clearly demonstrate that motion
artifacts can be corrected via deep learning. So far,
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MITIGATION OF MOTION ARTIFACTS IN CBCT 6239

F IGURE 5 Example results for SART-TV reconstruction for real-world test dataset, using the two options for the choice of ground truth,
“average volume” (left) and “average amplitude” (right). Presented are the uncorrected volumes using default reconstruction (top), the corrected
volumes (middle) as well as the residual corrections (bottom).

the best results were obtained with the volume-domain
based correction network, implementing a refined U-net-
based architecture.

The quantitative evaluations demonstrate that the
application of deep learning methods can yield signif-
icant improvements in imaging quality and reduction of
motion-induced artifacts in reconstructed CBCT scans.
In addition, a clinical evaluation was performed, in
which clinical experts confirmed the principal quan-
titative results for motion artifact reduction using a
real-world test dataset. While they confirmed that arti-
facts are reduced, and they expressed a preference for
using CNN-corrected CBCT scans for dose calculation,
for other applications including patient positioning or
segmentation, this could not yet be demonstrated in this
initial study.

In contrast to time-resolved 4D CBCT acquisition,
our proposed solution requires lower compute since it
requires processing only a single 3D volume, it does not
require additional information, for example, a breathing
trace, and finally it can be applied as a pure software
upgrade to existing machines.

There are several avenues for future research: First,
the presented results show promising improvements

mostly in the volume domain, independent of the
acquisition parameters and reconstruction technique.
However, there is room for improvement in the pro-
jection and dual-domain settings. One potential reason
could be the processing of projections in batches due
to GPU memory limitations,which leads to a loss of cor-
relation between different projection batches separately
processed by the neural network. In addition, great care
has to be taken to ensure the backpropagation of gra-
dients through the CBCT reconstruction layer to provide
CNN models with a meaningful, precise and noiseless
learning signal in the projection domain.

Second, models trained using supervised learning
typically suffer from imperfect generalization to data
acquired in entirely different settings.72 Although we
could demonstrate that the trained models are able to
generalize to the unseen test set despite different acqui-
sition times, projection counts and breathing patterns
compared with the training data set (see Section 2.3),
and also helped by the calibration technique we used,
generalization to highly different acquisition setups and
other anatomies is not granted. This encourages the
investigation of unsupervised learning and/or domain
adaptation techniques in future research.
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6240 MITIGATION OF MOTION ARTIFACTS IN CBCT

Third, our motion simulation currently only simulates
thoracic respiratory motion and does not include other
effects such as cardiac motion. Tackling cardiac motion
in chest CBCT combined with respiratory motion is
still an open problem. Furthermore, extending the pre-
sented method to abdominal CBCT requires simulating
different kinds of motion artifacts.

Fourth,when employing 4D reconstruction,guided, for
example, by an external breathing signal, the problem
of resolving motion can be addressed through explicit
prediction of deformations and their application during
reconstruction, which is the subject of a follow-up study.

In conclusion, while the initial results are very promis-
ing, future research will aim at further improved deep
learning techniques which enable improved adaptive
treatment capabilities in IGRT including patient posi-
tioning and tumor targeting, auto-segmentation as well
as dose calculation applications directly on the treat-
ment device.
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