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Studies are presented of the selection of events consistent with top quark pair production in data recorded by the

CMS detector at the LHC, corresponding to an integrated luminosity of 0.84±0.09 pb−1 and at center-of-mass energy
√
s = 7 TeV. Results are presented for the lepton+jets as well as dilepton channels. Event yields in data are compared

to those in simulation, and several background processes are estimated using data-driven techniques. The observed

yields of top-antitop candidate events are roughly consistent with the Standard Model.

1. INTRODUCTION

Top quark physics is an important part of the research program at the LHC. Since its discovery in proton-

antiproton collisions at the Tevatron collider, the properties of the top quark have been studied in detail (see e.g. [1]

and references therein). With the advent of the Large Hadron Collider (LHC), top-quark processes can be studied

for the first time in multi-TeV collisions.

Due to its large mass [2], the top quark may play a special role in the standard model. The top quark decays

rapidly, long before having the chance to form a bound state hadron. Hence, it allows direct access to measurements

of its mass, spin, charge and other properties. Additionally, since the Higgs boson of the standard model couples to

fermions in strength proportional to the fermion’s mass, the Higgs coupling to the top quark is large. Because of

this, detailed study of the properties of the top quark can provide constraints on the yet-to-be observed Higgs boson.

Further, in light of its large mass, it is hypothesized that the top quark could play a role in electroweak symmetry

breaking and the generation of particle masses in alternatives to the Higgs mechanism. Finally, several signatures

of new physics accessible at the LHC either suffer from top-quark production as a significant background or contain

top quarks themselves.

At the LHC, the top quark is expected to be produced primarily via the strong interaction (mostly via gluon-gluon

fusion, in contrast to the Tevatron) in tt̄ pairs. The next-to-leading order (NLO) corrections to top-quark pair

production at hadron colliders were calculated for unobserved spins in [3, 4] and with the full top-quark spin depen-

dence in [5, 6]. Only recently a complete analytic result for the NLO partonic cross section has been published [7].

Approximations towards a full NNLO result have been obtained by various groups, e.g. [8–10].

Within the standard model, the top quark decays via the weak process t→Wb nearly 100% of the time. Sub-

sequently top-quark pair events are categorized according to the decay of the two W bosons. We consider here

the dilepton channel, in which both W bosons decay to leptons, and the lepton+jets channel, where one W decays

leptonically, while the other one decays into quarks.

In this note, the first results [11, 12] on top quark physics obtained with the initial 7 TeV LHC data are presented.

Previous simulation studies for both channels can be found in [13–15].

2. DATA AND SIMULATED SAMPLES

The selected sample corresponds to an integrated luminosity [16] of 0.84 ± 0.09 pb−1, using data recorded by

CMS [17] up to August 2010. Before being used in the analysis, data events are constrained to periods in which the

CMS detector was fully operational. Additionally, events are vetoed if they are identified as resulting from beam

halo interactions or from beam scraping. Finally, events are required to possess at least one well-constructed primary

vertex within |z| <15 cm.

Simulated samples of top-quark pair production events are made using the MADGRAPH event generator [18],

subsequently processed with PYTHIA [19], and then processed with a full CMS detector simulation based on
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GEANT4 [20]. Events are generated with up to four additional hard partons. Various background samples were

produced. MADGRAPH is used for W/Z/γ+jets production and single top. Leptonic tau decays are included in

the Drell-Yan samples. PYTHIA is used to generate QCD events used in the study of the multijet backgrounds.

The top-quark pair production simulation has been normalized using a NLO cross section of σtt̄ = 157.5+23.2
−24.4 pb,

obtained using MCFM [21, 22]. The uncertainty in the cross section includes the scale uncertainties, determined

by varying the factorization and renormalization scales by a factor 2 and 0.5 around the central scale choice of

mt = 172.5 GeV/c2, and the uncertainties from the parton distribution functions and the value of the strong

coupling αS . Similarly, the simulations of W/Z/γ+jets production and single top production have been normalized

using available inclusive N(N)LO cross section calculations.

3. DILEPTON CHANNEL

Dilepton events in the dielectron (ee), dimuon (µµ) and electron-muon (eµ) modes are considered. Events passing

a single muon or electron trigger are selected which contain two oppositely charged, high transverse momentum pT
leptons with pT > 20 GeV/c and pseudorapidity |η| < 2.5 (2.4) for muons (electrons). Muons reconstructed [23]

with high quality are selected, whereas identification based on cluster shape properties and track-cluster matching

criteria is applied to electrons [24], and electron candidates consistent with photon conversions are rejected. Leptons

are required to be isolated within a cone of ∆R =
√

∆η2 + ∆φ2 < 0.3, using a relative isolation variable which

employs sums of track transverse momenta and calorimeter transverse energy deposits, scaled to the lepton pT . Both

leptons are required to be consistent with originating from the primary hard interaction, both in the transverse

plane as well as along the beam direction. For ee and µµ candidates, the dilepton invariant mass is required to

satisfy |Mll − MZ | > 15 GeV/c2, to reject Z events. Missing transverse energy (MET) [25] is calculated from

calorimeter signals, made more accurate by applying a track-based correction for the inexact calorimeter response. A

cut MET > 30 (20) GeV is applied in the ee, µµ (eµ) channels. Jets [26] are clustered using the anti-kT algorithm [27]

with R = 0.5, using calorimeter information and corrected using tracker measurements. Jet energies are corrected

to achieve uniform response in η (relative) and pT (absolute). The jet energy scale uncertainty is estimated as 5%.

Jets are required to satisfy pT > 30 GeV/c and |η| < 2.5 and must not overlap with any electron or muon within

∆R < 0.4. At least two jets are requested for the full event selection.

Distributions for a relaxed event selection (without jets+MET requirements, no Z veto applied) are shown in

Figure 1. Good agreement is observed between data and simulation, scaled to the integrated luminosity of the data.

For several sources of backgrounds, data-driven estimation techniques are tested. Drell-Yan events passing the Z

veto are estimated by counting events rejected by this veto, scaled by the ratio of events outside and inside the veto

region, obtained from simulation. The estimated systematic uncertainty of the method is 50%.

Background from events with non-genuine isolated leptons (i.e. not originating from W/Z decays) is estimated

by weighting events passing loose lepton identification with a tight-to-loose ratio which is parameterized in pT and

η, measured in an inclusive QCD sample. The method is used to estimate the contributions from QCD multi-jet

and W+jets events, containing two and one non-genuine lepton respectively, with a 50% systematic uncertainty per

lepton. The data-driven estimates are in reasonable agreement with expectations from simulation.

Applying the full event selection, including Z-veto, MET requirement and requesting at least two jets, there are

four events selected in the sample. The expected non-top background from simulation is less than 0.3 events, while

2.1 top signal events are expected. Figure 2 shows the b-jet multiplicity distribution using a b-tagging algorithm [28]

based on the impact parameter significances of the tracks associated with the jets. A loose working point with 80%

b-jet efficiency and 10% mistagging rate in QCD events is used. Also shown is the distribution of the scalar lepton

pT sum. The observed events are consistent with a top-antitop hypothesis.

Proceedings of HCP2010 – Toronto



]2Dilepton mass [GeV/c
0 20 40 60 80 100 120 140 160 180 200

)
2

E
ve

n
ts

/(
5 

G
eV

/c

-3
10

-210

-110

1

10

210

3
10

410

]2Dilepton mass [GeV/c
0 20 40 60 80 100 120 140 160 180 200

)
2

E
ve

n
ts

/(
5 

G
eV

/c

-3
10

-210

-110

1

10

210

3
10

410

Data
-
l+l→*γZ/

-τ+τ→*γZ/
QCD
single top
VV

νl→W
 signaltt

CMS Preliminary
=7 TeVs at -10.84 pb

μ/eμμEvents with ee/

Missing transverse energy [GeV]
0 10 20 30 40 50 60 70 80 90 100

E
ve

n
ts

/(
10

 G
eV

)

-110

1

10

210

3
10

410

Missing transverse energy [GeV]
0 10 20 30 40 50 60 70 80 90 100

E
ve

n
ts

/(
10

 G
eV

)

-110

1

10

210

3
10

410

Data
-l+l→*γZ/

-τ+τ→*γZ/

QCD

single top

VV

νl→W

 signaltt

CMS Preliminary
=7 TeVs at -10.84 pb

μ/eμμEvents with ee/

Figure 1: Distributions of dilepton invariant mass (left) and missing transverse energy (right) for a relaxed event selection, as

described in the text.
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Figure 2: Distributions of dilepton candidates passing the full event selection: number of b-tagged jets (left) and scalar lepton

pT sum (right).

4. LEPTON+JETS CHANNEL

In the lepton+jets channel, both the e+jets and µ+jets modes are considered. Events are selected which contain

exactly one isolated, high-pT lepton. For e+jets, electrons passing tight identification criteria, inconsistent with

originating from photon conversions and fulfilling pT > 30 GeV/c and |η| < 2.4 are selected. For µ+jets, high

quality muons with pT > 20 GeV/c and |η| < 2.1 are considered. Jets and MET are reconstructed using calorimeter

information. Jets are required to have pT > 30 GeV/c and |η| < 2.4. There is no explicit MET requirement. At

least four jets are expected for signal.

Event yields as a function of jet multiplicity are shown in Figure 3. Good agreement between data and simulation

is observed in all jet bins. The top signal-to-background ratio is increasingly significant at high jet multiplicities.
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Figure 3: Jet multiplicity for the e+jets (left) and µ+jets (right) event selections, without b-tagging.

Differential distributions (e.g. muon transverse momentum pµT , MET, transverse W-mass; not shown) for different

jet multiplicities are also in agreement with the data, with the exception of the low pµT , low MET region at low Njets in

µ+jets. In this kinematic region, QCD multi-jet background is contributing, which is not expected to be realistically

modeled by simulation. While there is a deficit of predicted QCD background in µ+jets, data and simulation are

in better agreement in e+jets. This may be explained by the different sources of background contributing in µ+jets

(muons from semi-leptonic b-decays and decays-in-flight) and e+jets (mostly photon conversions), respectively.

Several methods are studied which allow a data-driven estimate of the amount of QCD background in the selected

sample. In both e+jets and µ+jets, a method based on the relative isolation variable is employed. The isolation

distribution is fitted with a suitable function in the non-isolated (QCD dominated) sideband region, which is then

extrapolated into the isolated signal region. Another method, often referred to as ABCD method, exploits two

nearly uncorrelated variables (here lepton impact parameter and relative isolation) which separate signal and QCD

background in µ+jets. A third method, applied in e+jets, is based on a template fit of the MET or HT,lep =

MET + pT,lep distribution, using a data-driven QCD template. Two models are considered in order to obtain

template distributions for QCD multijet events: “background” electrons, in which the electron candidate very nearly

satisfies the selection criteria but instead is a marginal failure; and jet-electrons, positively identified jet objects

with large electromagnetic fraction, that closely resemble electron candidates. In e+jets (µ+jets), a 50% (100%)

systematic uncertainty is assigned to the QCD background, based on the data-driven estimates.

Since top quarks decay to b-quarks, one expects two b-jets to be present in every event in the case of signal, less

so for the important background processes such as QCD and W+jets, which contain a mixture of light and heavy

quarks. Therefore, the purity of the selection can be enhanced by selecting events containing b-jets. A simple way

to enrich the b-content of the sample is by requesting the presence of at least one jet which contains a muon within

∆R < 0.4, typically originating from a semileptonic b-decay. The jet multiplicity for such a selection in µ+jets

is shown in Figure 4. For Njets ≥ 3, 7 events are observed in data, where 2.5 events are expected from non-top

background. The W/Z+jets MADGRAPH samples contain a properly weighted mixture W/Z+light, W/Z+bb+jets

and W/Z+c(c)+jets, where heavy quarks are produced from both gluon splitting as well as using heavy quark matrix

elements, and combined using a matching procedure. Also shown in Figure 4 is the jet multiplicity for e/µ+jets

combined after requesting at least one b-tagged jet, using a secondary vertex tagger. For Njets ≥ 3, 30 events are

observed in data, in a region where ∼ 5.5 events are expected from non-top background.

5. CANDIDATE EVENTS

Two example candidate events are shown in Figure 5. A dilepton candidate event is shown in Figure 5 (left). It

has a muon with pT = 60 GeV/c, an electron with pT = 80 GeV/c, and large MET = 49 GeV. It contains two jets
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Figure 4: Jet multiplicity for µ+jets events, where one of the jets has an additional muon-in-jet signature (left), as well as for

e+jets and µ+jet combined, where at least one of the jets is b-tagged using a secondary vertex algorithm (right).

Figure 5: Event displays of an eµ dilepton candidate in rφ view (left), and of an e+jets candidate in ρz view (right).

with pT = 89 and 73 GeV/c. One of the jets is b-tagged. The mass hypothesis is consistent with being a top event.

Figure 5 (right) shows a candidate event in the e+jets mode passing the full event selection. It has one isolated

electron with pT = 41 GeV/c, MET=44 GeV, and four high pT jets, with pT = 109, 73, 68 and 61 GeV/c, among

which two are b-tagged. The reconstructed transverse W mass is 77 GeV/c2, the invariant mass of the untagged jets

is 102 GeV/c2, and the two possible hadronic top combinations, the 3-jet system comprised of the two untagged jet

and either the highest or second highest pT tagged jets, have masses 232 and 208 GeV/c2, respectively.

6. CONCLUSIONS

In both the dilepton and the lepton+jets channel, events are observed in signal regions expected to be dominated

by top quark pair production. The observed rates are roughly consistent with current theory expectations for top
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quark pair production, taking into account the experimental uncertainties due to e.g. jet energy scale, b-tagging

performance, but also the theoretical uncertainties (e.g. scale and parton distributions for top signal, heavy flavour

treatment for W/Z+jets backgrounds). The first top quark cross section measurements will come soon.
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